1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) #### VISION AND MISSION OF DEPARTMENT #### VISION The Department of Electronics & Communication Engineering shall strive to create engineering technocrats for addressing the global challenges in relevant areas to cater the ever changing needs of society at National and International level. #### MISSION - To ensure dissemination of knowledge through effective teaching and learning in Electronics and Communication Engineering. - 2. To excel in Research and Development activities in emerging areas. - To promote industry-institute and institute-institute linkages for sustainable development of academic, research, training and placement activities. - To establish center of excellence in thrust areas to nurture the spirit of innovation and creativity among faculty and students. ## Programme Educational Objectives (PEOs) The M. Tech. (Electronics & Communication Engineering) program shall produce professionals: - To provide in-depth knowledge of modern design tools to solve real-life problems in the field of Electronics and Communication Engineering. - To develop employability skills to meet dynamic educational and industrial needs for betterment of society. - 3. To impart research skills with professional and ethical attributes. - 4. To attain professional leadership qualities for effective delivery in multi-disciplinary domains. ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) #### Programme Educational Objectives (PEOs) The M. Tech. (Electronics & Communication Engineering) program shall produce professionals: - To provide in-depth knowledge of modern design tools to solve real-life problems in the field of Electronics and Communication Engineering. - To develop employability skills to meet dynamic educational and industrial needs for betterment of society. - 3. To impart research skills with professional and ethical attributes. - To attain professional leadership qualities for effective delivery in multi-disciplinary domains. #### Programme Outcomes (POs) After successful completion of M.Tech. (Electronics & Communication Engineering) program, the student will be able to: - Use mathematics, science and engineering knowledge for solving complex problems in the field of Electronics and Communication Engineering. - 2. Identify and analyze engineering problems to formulate appropriate solutions proficiently. - Design and develop real-time system to meet desired needs in the field of Electronics and Communication Engineering. - Compile, interpret and present research data in an appropriate format, taking into consideration scientific principles and methodology. - Use effectively modern tools and techniques for modeling complex problems to provide alternative solutions. - Design engineering systems to address societal, legal, cultural, security, health and safety issues. - Use techniques, skills, and modern engineering tools required for environmental and sustainable development. - Adopt and exhibit professional knowledge with ethical responsibilities. - 9. Function effectively as an individual as well as team-member for achieving desired goals. - 10. Communicate in both verbal and written forms to compete globally. - 11. Exhibit confidence, leadership qualities and remain engaged in life-long learning. - Take up administrative responsibilities involving both project and financial management, confidently. # 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) #### M.TECH. (ELECTRONICS AND COMMUNICATION ENGINEERING) | | | Semester-I | | | | | | |------------|--|--|--------|-------|----|------|---------| | Sr. No. | Subject Code | Subject Name | L | Т | P | Hrs. | Credits | | 1 | PCEC 811 | Optical Communication Systems | 3 | 0 | 0 | 3 | 3 | | 2 | PCEC 812 | Advanced Communication Systems | 3 | 0 | 0 | 3 | 3 | | 3 | PEEC 811 | Core Elective-I | 3 | 0 | 0 | 3 | 3 | | 4 | PEEC 812 | Core Elective-II | 3 | 0 | 0 | 3 | 3 | | 6 | RMAL-811 | Research Methodology and IPR | 2 | 0 | 0 | 2 | 2 | | 7 | ACMH-811 | English Research Paper Writing and
Professional Communication | 2 | 0 | 0 | 2 | 0 | | 8 | PEEC 813 | Core Elective-1 Lab | 0 | 0 | 4 | 4 | 2 | | 9 | PCEC-814 | Optical Communication System Lab | 0 | 0 | 4 | 4 | 2 | | | | Total | 16 | 0 | 8 | 24 | 18 | | | | | | | | | | | | | Semester-II (A) | | .0000 | | | | | Sr. No. | Subject Code | Subject Name | L | T | P | Hrs. | Credits | | 1 | PCEC 821 | Microwave Integrated Circuits | 3 | 1 | 0 | 4 | 4 | | 2 | PCEC 822 | VLSI Design | 3 | 0 | 0 | 3 | 3 | | 3 | PEEC 821 | Core Elective-III | 3 | 0 | 0 | 3 | 3 | | 4 | PEEC 822 | Core Elective-IV | 3 | 0 | 0 | 3 | 3 | | 5 | ACMH-821 | Constitution of India | 2 | 0 | 0 | 2 | 0 | | 6 | PCEC 823 | VLSI Design Lab | 0 | 0 | 4 | 4 | 2 | | 7 | PEEC 824 | Core Elective - II Lab | 0 | 0 | 4 | 4 | 2 | | 8 | PCEC 824 | Seminar | 0 | 0 | 2 | 2 | 1 | | | | Total | 14 | 1 | 10 | 25 | 18 | | | | | | | | | | | | ia
Parancananan penagan | Semester-II (B) | 002000 | | T | | 1 | | | The same of sa | aining in reputed industry/laboratory repute such as IITs, NITs, CSIR, DRI | 1151.0 | | | 40 | s/us | | | 4 | | 12 | - | ė. | | | | 100-1-01-0 | | Semester-III | | | | | | | Sr. No. | Subject Code | Subject Name | L | Т | P | Hrs. | Credits | | 1 | PEEC 911 | Core Elective -5 | 3 | 0 | 0 | 3 | 3 | | 2 | OEEC 911 | Open Elective | 3 | 0 | 0 | 3 | 3 | | 3 | PCEC 911 | Dissertation (Part-1) | 0 | 0 | 20 | 20 | 10 | | | | Total | 6 | 0 | 20 | 26 | 16 | | | | De Location and the second | | | | | | | Sr. No. | Subject Code | Semester-IV | L | Т | Р | Hrs. | Credits | | 5r. No. | Subject Code
PCEC 921 | Subject Name Dissertation (Part-2) | 0 | 0 | 32 | 32 | 16 | | Т. | FCEC 921 | Total | 0 | 0 | 32 | 32 | 16 | | | | iotai | U | U | 52 | 52 | 10 | # 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) # Total Credits: 68 List of Program Specific/ Core Elective Courses | | | COREELECTIVE-I (PEEC811) | |---------|--------------|---| | Sr. No. | Subject Code | Subject Name | | 1 | PEEC-811A | Micro & Nano-photonics | | 2 | PEEC-811B | RF Circuit Design | | 3 | PEEC-811C | Statistical Information Processing | | | | COREELECTIVE-II (PEEC 812) | | Sr. No. | Subject Code | Subject Name | | 1 | PEEC 812A | Antenna and Radiating System | | 2 | PEEC 812B | Internet of Things | | 3 | PEEC 812C | Remote Sensing | | | | COREELECTIVE-III (PEEC 821) | | Sr. No. | Subject Code | Subject Name | | 1 | PEEC 821A | Advanced Digital Signal Processing | | 2 | PEEC 821B | Soft Computing | | 3 | PEEC 821C | Digital Image Processing | | 4 | PEEC 821D | Artificial Intelligence and Deep Learning | | | A- | CORE ELECTIVE-IV (PEEC 822) | | Sr. No. | Subject Code | Subject Name | | 1 | PEEC 822A | Electronic Product Design | | 2 | PEEC 822B | Satellite Communication | | 3 | PEEC 822C | Digital Circuit Logic Design | | | | CORECLECTIVE-V (PEEC 911) | | Sr. No. | Subject Code | Subject Name | | 1 | PEEC 911A | Wireless Sensor Networks | | 2 | PEEC 911B | Network Security and Cryptography | | 3 | PEEC 911C | Advanced Computer Networks | | | | CORE ELECTIVE-I LAB | | Sr. No | Subject Code | Subject Name | | 1 | PEEC 813A | Communication Systems Lab | | 2 | PEEC 813B | Wireless Communication Lab | | | | CORE ELECTIVE-II LAB | | Sr. No | Subject Code | Subject Name | | 1 | PEEC 824A | Microwave Engg. Lab | | 2 | PEEC 824B | Computer-Aided Design Lab | #### **List of Open Elective Courses** | Sr. No. | Subject Code | Subject Name | | |---------|--------------|-------------------------------|--| | 1 | OEEC 911A | Electronic Product Design | | | 2 | OEEC 911B | Soft Computing | | | 3 | OEEC 911C | Optical Communication Systems | | ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | Onti | cal Com | PCEC-81 | | stems | | | | | |-------|-----
------------------------------------|--|--|--|--|--|--|---|---|--|---| | | | | | L | cui coii | | T | 1 | P | | Credits | 8 | | | | | | 3 | | | 0 | _ | 0 | | 4 | | | | | S | essiona | l Marks | 8 | | | | | | 50 | | | | | E | nd Sem | ester Ex | kaminat | ion Ma | rks | | | | 50 | | | Cours | | p
si
o
si
si
1
2 | lanning
ignal pi
ptical f
ystem;
ystems.
. To u
comr
. Abilit
. Abilit
comr | to use cocessing design anderstar municates to municate to use the us | optical difference mode their and the bind the ion system analyzion systems optical difference mode ion systems on systems optical difference mode ion systems optical difference mode ion systems optical difference mode in the op | els. Furnitigativaluation asic corresponding to the | nic tech
ther, fo
on in m
n of m
ncept of
disper
del ar
nmunica | nnologie
cuses of
nodern
odern
optical
sion no
optic con
nd imp | es as we
on diffe
optical
optical
fiber co
onlinear
mmunic
olement | ell as ad
rent no
fiber of
fiber of
mmuni
ities eff
cation sy | vanced nlineari ommun ommun cation s fect in ystems. | optica
ties in
ication
ication
ystem.
optica | | | | | 19104-000, 2040-00 | <u> </u> | ned fro | e de america de 1900. | degasta, emerse | 0.15 × 0.09 (0.00) | | | | | | | | | viappin | g or cot | ırse out | comes | with pro | ogram o | utcome | PO1 | | N. | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | 0 | PO11 | PO12 | | CO1 | М | W | N | N | N | W | N | N | W | N | N | N | | CO2 | M | N | N | S | N | N | N | N | М | N | N | N | | соз | W | М | М | N | N | S | N | N | N | N | М | М | | CO4 | М | S | S | N | М | S | M | N | N | N | W | М | | CO5 | N | N | M | S | M | М | M | N | N | N | N | N | | | | | | (2129) | nit-I | | | | | | | | Overview of optical fiber communication: Evolution of basic fiber optic communication system, benefits and disadvantages of fiber optics, transmission windows, transmission of light through optical fiber, numerical aperture (NA), optical fiber modes & configurations, types of fiber, wave propagation in step index & graded index fiber, MFD, propagation modes in step index fibers, attenuation in optical fibers, fiber optic loss calculations, bending loses, absorption, scattering, fiber dispersion, dispersion shifted fiber, D-flattened fiber, polarization, cut-off condition and V-parameter, connectors & splices. **Dispersion and nonlinearities:** Dispersion in single mode and multimode fibers, attenuation and dispersion limits in fibers, dispersion management, Kerr nonlinearity, self-phase modulation, cross phase modulation, FWM. ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-II 12 hrs Optical sources: Direct and indirect band gap materials, semiconductor light-emitting diodes and laser diodes, LED power & efficiency, double hetero-junction LED, planner & dome LED, surface-emitting LEDs, edge-emitting LEDs, super luminescent LED, characteristic of LED, modulation, laser diodes: basic concepts for emission of radiation, threshold condition for laser oscillation, quantum well laser, distributed feedback laser, laser characteristics. **Optical detectors:** Principles of photodiodes, PIN & avalanche photodiodes,
photodetector noise, detector response time, avalanche multiplication noise, temperature effect on a valanche gain, receiver SNR and BER calculations. Unit-III 10 hrs **Optical amplifiers:** Semiconductor amplifiers, Erbium-doped fiber amplifiers (EDFAs) and Raman amplifiers, analytical modeling of gain saturation, gain equalization, ASE noise, amplifier cascades. **Optical sensors:** Advantages, generic optical fiber sensor, fiber selection for sensor, wavelength modulated sensors - pH, humidity, temperature, carbon dioxide sensors, fiber Bragg grating based sensors - principle, strain, pressure sensors, chemical sensors. Unit-IV 10 hrs **Optical networks design:** Fiber optic system design considerations -power budget, bandwidth and rise time budgets, electrical and optical bandwidth etc. Advanced multiplexing strategies: Optical TDM, subscriber multiplexing (SCM), WDM and hybrid multiplexing methods, optical networking - optical network topologies, network architecture- SONET/TDH, optical burst switching, OADM, wavelength conversion, optical filters, MZI. | RECON | IMENDED BOOKS | | |-------------------------------|---|--| | Title | Author | Publisher | | r-optic communication Systems | G. P. Aggarwal | 2nd Ed., J. Wiley & Sons,
1997 | | c Communication Systems | Mynbaev | Pearson education, 2001 | | cal Fiber Communication | Gerd Keiser | 5th edition, McGraw Hill,
2013 | | cal Fiber Communication | J. Senior | PHI | | | Title r-optic communication Systems c Communication Systems cal Fiber Communication | r-optic communication Systems G. P. Aggarwal c Communication Systems Mynbaev cal Fiber Communication Gerd Keiser | ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | Δdv | anced | | C-812
unicatio | on Syste | ems | | | | |---|---------------|--|---|--|---|--|---|---|---|---|--| | | | | L | difect | - | T | - | P | Ì | Credits | 8 | | | 9 | | 3 | | - | 0 | | 0 | | 4 | | | | Y) | Session | nal Mai | ks | | - | | 70 | | 50 | | | | 7 | End Se | mester | Exami | nation | Marks | | | | 50 | | | Course Aim of the course is to study the fundamentals of fading channels. It gives deep insight into the basics of GSM and CDMA. It discusses different types of diversity techniques and equalization algorithm use communication systems. Finally, it introduces the concept of 3G, 4G and wireless communication standards. Course Aim of the course is to study the fundamentals of fading channels. It gives deep insight into the basics of GSM and CDMA. It discusses different types of diversity
techniques and equalization algorithm use communication systems. | | | | | | | | | sses the
used in | | | | Outcomes | 9 | 2 Apr | nly fre | duancy | ****** | conce | nt in | mobile | commu | nications | and to | | | | ana
tec
3. Dis
con
disa
4. Ana
for
usii
5. Uno | alyze it
hnique
tinguish
mmunic
advanta
alyze a
ward a
ng the t
derstan | es effects. The variations ages. The december of decembe | ious
e.g., Fl
sign Cl
erse cha
ogy.
ocomin | interfo
multipl
DMA, 1
DMA s
annel o | erence,
Ie ac
ΓDMA,
system
details,
nologies | syster
cess
CDMA
function
advant
like 30 | n capaci
techniquand thei
oning with
ages and
6,4G etc. | ity, and
es for
r advanta
th knowl
disadvar | handoff
mobile
ages and
ledge of | | | | ana
tec
3. Dis
con
disa
4. Ana
for
usin
5. Uno | alyze it
hnique
tinguish
mmunic
advanta
alyze a
ward a
ward a
ng the t
derstan
ing of c | s effects. The variations ages. The reverse course ourse o | ious e.g., Fl sign Cl erse cha ogy. ocomin | interformultiple DMA, Topology annel of technices with | erence, le ac TDMA, system details, nologies | syster
cess
CDMA
function
advant
like 30
am out | n capaci
technique
and thei
oning with
ages and
6, 4G etc.
comes | ity, and
es for
r advanta
th knowl
disadvar | mobile
ages and
ledge of
stages of | | POI | PO2 | ana tec 3. Dissection | alyze it
hnique
tinguish
mmunic
advanta
alyze a
ward a
mg the t
derstan
ing of c | s effects. ations ages. and decendereverse ding up ourse o | ious e.g., Fl sign Cl erse cha ogy. ocomin | interformultiple DMA, Topological Both | erence, le ac TDMA, system letails, nologies progra | syster cess CDMA function advant like 30 am out PO9 | technique and their and their and their ages and ages ages ages ages ages ages ages | es for radvantath know disadvar | mobile ages and ledge of tages of | | CO1 S | PO2 | ana tec 3. Dissipation disputation dissipation dissipation disputation disputa | alyze it hnique tinguish mmunic advanta alyze a ward a mg the t derstan ing of c PO4 | s effects. The variations ages. Indicate the course of t | ious e.g., Fl sign Cl erse cha ogy. ccomin | multiple DMA, To DMA so annel con g technology technolo | erence, le ac TDMA, system details, nologies progra PO8 W | syster cess CDMA function advant like 30 am out PO9 W | technique
and their
oning with
ages and
6, 4G etc.
comes
PO10 | es for radvantath knowledged disadvare | mobile ages and edge of tages of | | CO1 S | PO2
S
S | ana tec 3. Diss con diss 4. Ana for usin 5. Unc Mappi PO3 M S | alyze it hnique tinguish mmunic advanta alyze a ward a mg the t derstan ing of c PO4 M M | s effects. n variations ages. nd revertechnologing up ourse of PO5 S S | ious e.g., Fl sign Cl erse cha ogy. ocomin | multiplomA, TomA sannel constitution of technology tech | erence, le ac TDMA, system details, nologies progra PO8 W M | syster cess CDMA function advant like 30 am out PO9 W W | technique and their and their and their ages and ages ages ages ages ages ages ages | es for radvanta th know disadvar | handoff mobile ages and ledge of ntages of | | CO1 S
CO2 S
CO3 S | PO2
S
S | ana tec 3. Dissipation dispitation dispita | alyze it hnique tinguish mmunic advanta alyze a ward a mg the t derstan ing of c PO4 M S | s effects. To various ages. Ind de reverse course of PO5 S M | ious e.g., Fi sign Cl erse cha ogy. ocomin outcom PO6 S M W | multiple DMA, To DMA so annel constitute of the | erence, le ac rDMA, system details, nologies progra PO8 W M M | syster cess CDMA function advant like 30 am out PO9 W W | technique and their and their and their and their ages and ages and ages and ages were ages were were were were were were were we | es for radvanta th knowledisadvar PO11 W W W | handoff mobile ages and ledge of stages of PO12 W W M | | CO1 S | PO2
S
S | ana tec 3. Diss con diss 4. Ana for usin 5. Unc Mappi PO3 M S | alyze it hnique tinguish mmunic advanta alyze a ward a mg the t derstan ing of c PO4 M M | s effects. n variations ages. nd revertechnologing up ourse of PO5 S S | ious e.g., Fl sign Cl erse cha ogy. ocomin | multiplomA, TomA sannel constitution of technology tech | erence, le ac TDMA, system details, nologies progra PO8 W M | syster cess CDMA function advant like 30 am out PO9 W W | technique and their and their and their ages and ages ages ages ages ages ages ages | es for radvanta th know disadvar | handoff mobile ages and ledge of atages of | Cellular communication fundamentals: Cellular system design, frequency reuse, cell splitting, handover concepts, co channel and adjacent channel interference, interference reduction techniques and methods to improve cell coverage, frequency management and channel assignment. Unit-II 12 hrs **Mobile radio propagation:** Large scale path loss, free space propagation model, radio wave propagation mechanisms, ground reflection (two ray) model, outage probability, small scale fading and multipath propagation, types of small scale fading, diversity techniques and algorithms for adaptive equalization. ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-III 12 hrs **GSM** and **Code** division multiple access: GSM architecture, GSM subsystems, GSM I ogical channels, data encryption in GSM, mobility management, call flows in GSM. Introduction to CDMA technology, IS -95 system architecture, air interface, physical and logical channels of IS-95, forward link and reverse link operation, call processing in IS-95, call processing in IS-95, soft handoff, evolution of IS-95 to CDMA 2000. Unit-IV 12 hrs **Higher generation cellular standards:** Evolved EDGE, 4G standards and its architecture, call flow for LTE, VOLTE and UMTS, introduction to 5G. | | RECO | MMENDEDBOOKS | | |----|--|-----------------------------|--| | | Title | Author | Publisher | | 1. | Mobile Cellular Telecommunications
Analog and Digital systems | William C.Y.
Lee. | 2 nd edition, TMH
Publication,1995 | | 2. | Wireless Communications Principles and Practice | T.S. Rappaport | 2 nd edition, PHI,2002 | | 3. | V.K. Garg | IS-95 CDMA and
CDMA-2000 | Pearson education ,4 th edition,2009 | | 4. | A GSM system Engineering | Asha Mehrotra | Artech House Publishers, Boston,
London,1997 | ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | 1 | Micro a | PEEC-8
nd Nan | | onics | | | | | |----------------|--------|-----|--|--|--|---|--|---|--------------------------------|-----------------------|---|----------| | | | | | L | | | T | | Р | | Credits | 8 | | | | | | 3 | | | 0 | | 0 | | 3 | | | | | | Session | nal Mar | ks | | | | | | 50 | | | | | | End Se | mester | Examir | nation N | Vlarks | | | | 50 | | | Cours
Objec | tives: | | fundar
photor | nentals
nic devic | of ph | otonics
physics | with | focus | on mic | | understa
onic an | | | Cours
Outco | | | 2. To using
3. Able
4. Able
5. Able | indersta
le, flat i
to des
to des
to m | and the
nterfac
ign diffe
ign nan | fundares and interest ty
erent ty
o-photo
and anal | mentals
in meta
pes of ponic dev
lyze the | l/dielec
plasmor
vices.
e nano | ace pla
tric mu
nic sens | ltilayer s
ors and | olaritons
tructure
solar cell
ces usin | s.
s. | | | | | Mappi | ng of co | ourse o | utcome | s with p | orogran | n outco | mes | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | P08 | PO9 | PO10 | PO11 | PO12 | | CO1 | S | S | M | S | M | M | M | N | S | M | N | N | | CO2 | S | S | M | M | M | N | M | N | M | М | N | N | | соз | S | М | S | S | S | S | S | M | S | S | N | N | | CO4 | S | S | S | S | S | М | M | N | S | S | N | N | | CO5 | S | S | M | M | М | N | M | N | M | М | N | N | | | 7.1 | | | Uı | nit-l | | | | | | | 14 hrs | Ray optics: Introduction, postulates of ray optics, Hero's principal, Snell's Law, simple optical components, graded-index optics, ray equation (Paraxial ray equation) matrix optics, ray transfer matrix, matrix of simple optical components (free-space propagation, refraction at a planar boundary, refraction at a spherical boundary, transmission through a thin lens, reflection from a planar mirror, reflection from a spherical mirror), matrices of cascaded optical components. **Wave optics**: Postulates of wave optics, intensity, power, and energy, monochromati c waves: complex representation and Helmholtz equation, wave fronts (plane waves, spherical waves, interference, diffraction), paraxial waves, beam optics, Fabry Perot cavity, micro resonators - ring resonator and disc resonator devices. **Electromagnetic optics**: TM and TE polarized light, boundary conditions, transmission and reflection of P-polarized and S-polarized light from a planar boundary, single and multi-layer problem polarization of light; matrix representation (The Jones vector). ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-II 12 hrs Review of electromagnetic (EM) theory: Boundary conditions, some relevant EM problems, FDTD and FEM modelling, electromagnetics of metals- Maxwell's equations and electromagnetic wave propagation, the dielectric function of the free electron gas, dispersi on of the free electron gas and volume plasmon, real metals and inter band transitions, fundamentals of plasmonics, surface plasmon
resonance, surface plasmon polaritons at a single interface, dispersion relation, multilayer system, propagation length, pen etration depth, Drude model without considering damping, Drude model considering damping, Lorentz model, Lorentz Drude model. Unit-III 12 hrs Excitation of surface plasmon polaritons at planar interfaces: Coupling mechanism, prism coupling, Kretschmann configurations, Otto configurations, angular interrogation, spectral interrogation, reflectivity, transmittivity, complete resonance condition, grating coupling, wave guide coupling: 1-D coupling, 2-D coupling, plasmonic gratings, models describing the refractive index of metals, localized surface plasmon resonance, plasmonic sensors and devices, surface-enhanced Raman scattering. Unit-IV 10 hrs Plasmonic waveguides and interconnects: Metal dielectric interface, MI wave guide, MIM wave guide, IMI wave guide, symmetric and anti-symmetric mode, propagation length and penetration depth of MIM and IMI wave guide, photonic crystals and devices. | | RECOMMENDED BOOKS | | |------------------------------|--|----------------------| | Title | Author | Publisher | | 1. Principles of Nano-optics | L. Novotny and B. Hecht | Cambridge University | | 2. S. Maier | Plasmonics - Fundamentals and Applications | Springer | # 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | | | EEC-81
Circuit D | | | | | | | |-----------------|--|---------------------|---|----------------------|-------------------|---------------------|----------------------|---------------------|------------------|----------|---------|----------| | | | | L | | | т | | | Р | | Credits | Or
S | | | | | 3 | | | 0 | | | 0 | | 3 | | | | | | Sessio | nal Mar | ks | | | | | | 50 | | | | | | End Se | mester | Examir | nation N | /larks | | | | 50 | | | Cours | The course aims to design and analyze basic resonators, RF filters, a transistor amplifier; study the operation and characteristics of RF components, oscillators and mixers used in RF design. 1. To discuss, design and analysis of filters and amplifiers. | | | | | | | | | | | | | Cours | e | | - | | | | | | | | | | | Outco | | | 2. To | unders
pedance | tand the match | e work | ing con | cepts c | of RF ac | tive cor | nponen | ts and | | | 1 - 7 | | Mappin | | | <u> </u> | | | | | 711 | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | CO1 | S | S | S | S | N | S | N | N | M | N | M | W | | CO2 | S | M | N | N | N | M | M | N | N | N | M | N | | CO3 | М | N | N | N | N | M | N | N | M | N | N | N | | | | | | <u>Ur</u> | nit-l | | | | | | | 12 hrs | | comp | | and cir | tance of
cuit boa | ard con | sideratio | | 71.77 | | | | | rostrip | | | | | | 3,000 | it-II | | | | | | | 12 hrs | | scatte | ring pa | ramete | filter: Ir
rs, basic
upled filt | resona
er. | tor and | | | | | | | , filter | | | | | | <u>Un</u> | it-III | | | | | | | 12 hrs | | transi
Match | stor, RF
ning and | field ef
d biasi | ents an
fect trar
ng netw
orks, amp | sistors,
orks: Ir | diode r
npedan | nodels,
ce mate | transist
thing us | or mod
sing disc | els.
crete co | mponer | | | | | | | | <u>Uni</u> | t-IV: | | | | | | | 12 hrs | | relation broad | ons, sta
Iband, l | bility c | fier, osc
onsidera
ower, ar
on, basi | itions, o
nd mult | constantistage | t gain,
amplifie | noise fi
ers, bas | gure ci | rcles, co | onstant | VSWR o | ircles, | # 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | RECOMI | MENDED BOOKS | | |---|------------------------------------|---| | Title | Author | Publisher | | RF Circuit Design | Reinhold Ludwig,
Pavel Bretchko | Pearson Education, 1st
Indian Reprint, 2001. | | Design of Analog CMOS Integrated Circuits | B Razavi | Mc Graw Hill, 2000. | | RF Microelectronics | BehzadRazavi | 2nd edition, Pearson
Education, 1997. | | 4. RF Circuit Design: Theory & Applications | Reinhold Ludwig,
Gene Bdgdanov | 2nd edition, Pearson, 2008. | ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | Static | | | | occina | | | | | |--------------------------|----------|------------------|---|--|---|--
--|--|---|--|--|--| | | | | | | icai iiii | - | - | - | P | | Credits | § | | | | - | | | | 105 | - | | | | | <u> </u> | | | | S | essiona | 3 0 0 Ional Marks Semester Examination Marks main objective of the course is to understand the basics tinuous random variables and processes, random signistical decision theory, parameter estimation and specy discrete channels and measures of information generations forms; complexity, compression, and efficient compared to the complexity of comple | | | | 10000 | | | | | | | | _ | | | 3 0 0 3
Marks 50 | | | | | | | | | Course
Object | 7.9 | s
H
C
a | tatistica
dow dis
continuo
and aud
and con | al decision | sion the
channels
ms; con
al infor
g codes | eory, p
s and r
nplexity
mation
s, Huff | aramete
neasure
v, comp
coding
man, S | er estings
s of information,
schemen | nation
formation
and effes; includes
a-Fano, | and spe
on gene
fficient o
luding e
arithm | ectral and
eralize to
coding
error de
etic, ad | nalysis
o their
of text
tecting | | | Outcon | 2 | syste
statis
. To d | ms, su
tical op
emons | uch as
peration
trate m | inforr
s. | nation | system | is, rec | eivers, | filterin | g, and | | | | | . Comp
appli
. To de
for m | cations
evelop
nodelin | ely evo
to signa
framew
g and a | al proce
orks ba
nalysis | y resulessing, one of various | ommui
probal
ous syst | eloped
nication
pilistic a
tems in | in thi | s cour
ns.
hastic t
function | se for
themes | | | | 4 | . Comp
appli
. To de
for m
in de | cations
evelop
nodelin
cision r | ely evo
to signa
framew
g and a | al proce
orks ba
nalysis
statisti | y resulessing, consisted on of various of the consisted on consisted on the th | ommui
probal
ous syst
ence, e | eloped
nication
pilistic a
tems in
stimati | in thins system
and stoc
volving
on and c | s cour
ns.
hastic t
function | se for
themes | | | P01 | 4 | . Comp
appli
. To de
for m
in de | cations
evelop
nodelin
cision r | ely evo
to signa
framew
g and a
naking, | al proce
orks ba
nalysis
statisti | y resulessing, consisted on of various of the consisted on consisted on the th | ommui
probal
ous syst
ence, e | eloped
nication
pilistic a
tems in
stimati | in thins system
and stockyolving
on and costs | s cour
ns.
hastic t
function | rse for
themes
nalities
on. | | CO1 | PO1
M | 4
M | . Compapplication of the company | cations
evelop
nodelin
cision r | to signate framew g and a making, rse outo | al proce
orks ba
nalysis
statistic | y resulessing, consistency of various var | probal
probal
ous syst
ence, e | eloped
nication
pilistic a
tems in
stimati | in thins system
and stockyolving
on and costs | s cour
ns.
hastic t
function
detection | rse for
themes
nalities
on. | | 11574542137 | | M
PO2 | . Compapplication of the company | cations evelop nodelin cision r of cou | to signate framew g and a making, rse outc | al proce
orks ba
nalysis
statisticomes v | y resulessing, consect on of various vari | probal
probal
pus syst
ence, e
gram o | reloped
nication
pilistic a
tems in
stimati
utcome | in things system and stood volving on and constant policy | s cour
ns.
hastic t
function
detection | themes
nalities
on. | | CO2 | М | M
PO2
W | . Compapplication of the company | cations evelop nodelin cision r of cour | to signator framework and a making, rse outo | al proce
orks ba
nalysis
statistic
comes v
PO6
W | y resulessing, cased on of various variou | probal
probal
pus syst
ence, e
gram o
PO8 | reloped
nication
pilistic a
tems in
stimati
utcome
PO9
W | in things system and stock volving on and control of the property prope | s cour
ns.
chastic t
function
detection
PO11 | themes
nalities
on. | | CO1
CO2
CO3
CO4 | M | M PO2 W N | . Compapplication of the company | cations evelop nodelin cision r of cou PO4 S S | to signate framewag and a making, rse outcome PO5 N S M M | al proce
orks ba
nalysis
statistic
omes v
PO6
W
N | y resulessing, of seed on of various of various of the property propert | probal
probal
pus syst
ence, e
gram o
PO8
M
N | reloped
nication
pilistic a
tems in
stimati
utcome
PO9
W | in things system and stock volving on and comments PO10 N | s cour
ns.
chastic t
function
detection
PO11
N | themes
nalities
on. | **Review of random variables**: Probability concepts, distribution and density functions, moments, independent, uncorrelated and orthogonal random variables; vector-space representation of random variables, vector quantization, Tchebaychef inequality theorem, central limit theorem, discrete & continuous random variables. **Random process:** Expectations, moments, ergodicity, discrete-time random processes stationary process, autocorrelation and auto covariance functions, spectral representation of random signals, properties of power spectral density, Gaussian process and white noise process. ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-II 12 hrs Random signal modelling: MA(q), AR(p), ARMA(p,q) models, hidden Markov model & its applications, linear system with random input, forward and backward predictions, Levinson
Durbin algorithm. Statistical decision theory: Bayes' criterion, binary hypothesis testing, M ary hypothesis testing, minimax criterion, Neyman-Pearson criterion, composite hypothesis testing. Unit-III 12 hrs Parameter estimation theory: Maximum likelihood estimation, generalized likelihood ratio test, some criteria for good estimators, Bayes' estimation minimum mean-square error estimate, minimum, mean absolute value of error estimate maximum, a-posteriori estimate, multiple parameter estimation best linear unbiased estimator, least-square estimation recursive least-square estimator. **Spectral analysis:** Estimated autocorrelation function, periodogram, averaging the periodogram (Bartlett method), Welch modification, parametric method, AR(p) spectral estimation and detection of harmonic signals. Unit-IV 14hrs Information theory and source coding: Review of information and entropy, source coding theorem, Huffman, Shannon-Fano, arithmetic, adaptive coding, RLE, LZW, data compaction, LZ-77, LZ-78. discrete memory less channels, mutual information, channel capacity, channel coding theorem, differential entropy and mutual information for continuous ensembles. **Application of information theory:** Group, ring & field, vector, GF addition, multiplication rules, introduction to BCH codes, primitive elements, minimal polynomials, generator polynomials in terms of minimal polynomials, some examples of BCH codes and decoder, Reed-Solomon codes & decoder, implementation of Reed Solomon encoders and decoders. | | RECOM | MENDED BOOKS | | |----|---|---|------------------------------------| | | Title | Author | Publish er | | 1. | Probability, Random Variables and
Stochastic Processes | Papoulis and S.U.
Pillai | 4th Edition, McGraw-Hill, 2002. | | 2. | Statistical and Adaptive Signal
Processing | D.G. Manolakis, V.K.
Ingle and S.M.
Kogon | McGraw Hill, 2000. | | 3. | Signal Detection and Estimation | Mourad Barkat | Artech House, 2nd
Edition, 2005 | | 4. | Information theory and reliable communication | R G. Gallager | Wiley, 1st edition, 1968 | | 5. | Elementary Number Theory | Rosen K.H, | Addison-Wesley, 6th edition, 2010. | | 6. | The Theory of Error-Correcting Codes | F. J. Mac Williams
and N. J. A. Sloane | New York, North-Holland,
1977. | ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | | 1 | PEEC-8 | 12A | | | | | | | |------------|--------|----------|--|--|--|--|--|---|--|---|---------------------------------|-----------|--| | | | ,,, | | An | tenna A | and Rac | liating S | System | | , | | | | | | | | | L | | | T | 1 | Р | | Credit | 5 | | | | | ĺ | | 3 | | | 0 | | 0 | 3 | | | | | | | | Session | nal Mar | ks | | | | | 50 | | | | | | | | End Se | mester | Examir | nation I | Vlarks | | | 50 | | | | | | tives: | omes: | introdu
antenri
charac
commo
1. Fan
clas
2. Be
3. App | uced, wand microstication in the contraction | vith footoning of the control | cus on
intenna
design
ms.
ith radi
is.
articula
ciples to | loop a
, broad
consid
ation i | intenna
Iband a
eration
mechan | s, aper
ntenna
s of us
ism, a
nna for
nas and | ture ar
and ant
ing ante
ntenna
given sp
antenna | ntenna,
tenna ar
ennas in | | | | | | | | | | | | rogram | - | ** | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | | | CO1 | PO1 | PO2
M | | | _ | PO6
M | PO7
N | PO8
M | PO9
N | PO10
N | PO11
W | PO12
N | | | CO1
CO2 | | | PO3 | PO4 | PO5 | 111111111111111111111111111111111111111 | - | 200 | | | | | | | | S | М | PO3
M | PO4
M | PO5
N | М | N | M | N | N | w | N | | | CO2 | S
N | M
S | PO3
M
M | PO4
M
N | PO5
N
N | M | N
N | M
N | N
M | N
N | W
M | N
M | | **Fundamental concepts:** Physical concept of radiation, radiation pattern, near- and far-field regions, reciprocity, directivity and gain, effective aperture, polarization, input impedance, efficiency, Friis transmission equation, radiation integrals and auxiliary potential functions. Radiation from wires and loops: Infinitesimal dipole, finite-length dipole, linear elements near conductors, dipoles for mobile communication, small circular loop. Unit-II 12 hrs Antenna arrays: Analysis of uniformly spaced arrays with uniform and non-uniform excitation amplitudes, extension to planar arrays. Reflector antennas: Prime focus parabolic reflector and Cassegrain antennas, design concept. Unit-III 12 hrs Aperture antennas: Huygens principle, radiation from rectangular and circular apertures, design considerations, Babinet's principle, radiation from scrotal and pyramidal horns, design concepts. Microstrip Antennas: Basic characteristics of microstrip antennas, feeding methods, methods of analysis, design of rectangular and circular patch antennas. # 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-IV 12 hrs **Broadband antennas:** Broadband concept, log-periodic antennas, frequency independent antennas. **Basic concepts of smart antennas:** Concept and benefits of smart antennas, fixed weight beam forming basics, adaptive beam forming. | | R | ECOMMENDEDBOOKS | | |----|--|--|---------------------------| | | Title | Author | Publisher | | 1. | Antenna |
K D Parsad | Parkash Publications | | 2. | Antennas | John D. Karans | Tata McGraw Hill | | 3. | Antenna Theory and Design | Balanis, C.A. | 3rd Ed., John Wiley &Sons | | 4. | Electromagnetic Waves and
Radiating Systems | Jordan, E.C. and
Balmain, K.G | 2nd Ed, Pearson Education | | 5. | Antenna Theory and Design | Stutzman, W.L. and
Thiele, H.A., | 2nd Ed, John Wiley & Sons | | 6. | Antenna Theory and Design,
Revised edition | Elliot, R.S. | Wiley-IEEE Press | | 7. | Microstrip Antenna Design
Handbook, | Garg. R. Bhartia, P.
Bahl, I. and Ittipiboon. | Artech House | #### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | | | EC-812
et of T | | | | | | | |-------------------|-----|--|----------------------|--|-------------|-------------------|---------|------------------|--------|-----------------------|---------|---------------------------------| | | | | L T P | | | | | | | | | | | | | | | 3 | | | 0 | | | 0 | | 3 | | | | | Sessio | nal Ma | irks | 10 | | | | | | 50 | | | | | End Se | meste | r Exan | ninatio | n Mar | ks | | | | 50 | | Objective | es: | 0000 | impler | nent I
m for | oT so | lutions | in d | ifferen | t scen | arios a | nd expe | logies to
rimenta
running | | Course
Outcome | es: | STATE OF THE | nety
3. To
cha | ealize
works.
under
racteri
unders | the restand | volutio
build | n of Ir | iternet
Iocks | in sm | art citie:
nternet | of thin | & sensor | | | | Mapp | ing of | Course | e Outc | omes \ | with P | ogran | Outco | omes | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | | CO1 | S | M | W | N | N | N | N | N | N | N | N | S | | CO2 | M | M | М | N | N | N | N | N | N | N | w | S | | CO3 | W | S | W | N | N | N | N | N | N | N | W | W | | CO4 | S | S | М | N | N | N | N | N | N | N | N | M | | | | | | | Unit | <u>-1</u> | | | | | | 14 hrs | **IoT Architecture:** Smart objects as building blocks for IoT, open source hardware and embedded systems platforms for IoT, edge/gateway, I/O drivers, C programming, multithreading concepts. Application domains of IoT: Smart cities and IoT revolution, fractal cities, from IT to IoT, M2M and peer networking concepts, IPV4 and IPV6, software defined networks SDN. Unit-II 12 hrs **Fog computing:** From cloud to fog and MIST networking for IoT communications, principles of edge/P2P networking, protocols to support IoT communications, modular design and abstraction, security and privacy in fog. IoT technology fundamentals: Introduction to WSN and IoT networks (PAN, LAN and WAN), edge resource pooling and caching, client side control and configuration. Unit-III 10 hrs **Operating systems in IoT:** Requirement of operating system in IoT environment, study of Mbed, RIoT and Contiki operating systems. # 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) #### Unit-IV 12 hrs **Application of IoT:** Connected cars IoT transportation, smart grid and healthcare sectors using IoT, introductory concepts of big data for IoT applications. Security in IoT: Security and legal considerations, IT Act 2000 and scope for IoT legislation. | RECOMM | IENDED BOOKS | | |---|--|---------------| | Title | Author P | ublisher | | 1. Internet of Things- Hands on approach | Arshdeep Bahga and Vijay
K. Madisetti | VPT publisher | | 2. Designing the Internet of Things | Adrian McEwen and
Hakim Cassimally | Wiley | | 3.Getting started with Internet of Things | Cuno Pfister | Maker Media | | 4. Internet of things | Samuel Greenguard | MIT Press | | | | | #### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | .02 | | | PEEC-8
mote S | 300 | , | | 9.5 | | | |-------|----------|-------|--|---|---|--|--|---|---|--|--|--------| | | | | L | | 0.000 | Т | | | Р | | Credits | i | | | | | 3 | | | 0 | | | 0 | | 3 | | | | | | Sessio | nal Ma | rks | | | | | | 50 | | | | | | End Se | emester | r Exami | nation l | Marks | | | | 50 | | | Cours | se Outco | omes: | platfor
sensor
1. To
ser
2. To
col
3. To | rms, pl
rs used
unders
nsing, p
apply
llection,
under | notogra
in RADA
stand ba
articula
principl
, radiati | phic p
ARs and
asic cor
arly the
les of v
on, reso
various | Altime
Altime
acepts,
geomet
variety
olution, | and of
ter-LiD/
principl
ric and
of topi
and sar | optome
AR
les, and
radiom
ics of i
mpling. | echanica
I applica
etric pr
emote | remote al electr ations of inciples. sensing nterpreti | remote | | | | | Mappir | - | | | with p | rogram | outcor | nes | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO1
0 | PO11 | PO12 | | CO1 | S | S | М | S | М | М | S | W | W | M | w | w | | CO2 | S | S | S | M | М | М | M | W | W | w | W | w | | соз | S | S | S | S | S | М | М | M | W | w | w | w | | | 122 | | | Ur | nit-l | 900 | 000 | 2.0 | 220 | | 7.5 | 12 hrs | **Physics of remote sensing**: Electromagnetic spectrum, physics of remote sensing, effects of atmosphere scattering, different types of atmosphere scattering, absorption, atmospheric window, energy interaction with surface features, spectral reflectance of vegetation, soil and water atmospheric influence on spectral response patterns, multi concept in remote sensing. Unit-II 12 hrs Data acquisition: Types of platforms, different types of aircrafts, manned and unmanned spacecrafts, sun synchronous and geosynchronous satellites, types and characteristics of different platforms: LANDSAT, SPOT, IRS, INSAT, IKONOS, QUICK BIRD etc., photographic products, B/W, color, color IR film and their characteristics, resolving power of lens and film, optomechanical electro optical sensors —across track and along track scanners, multispectral scanners and thermal scanners, geometric characteristics of scanner imagery, calibration of thermal scanners. Unit-III 12 hrs Scattering system: Microwave scatterometry, types of RADAR, SLAR: resolution, range and azimuth, real aperture and synthetic aperture RADAR, characteristics of microwave image topographic effect, different types of remote sensing platforms, airborne and space borne, sensors, ERS, JERS, RADARSAT, RISAT, scatterometer, altimeter -LiDAR remote sensing, principles, applications. ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-IV: 12 hrs Thermal and hyper spectral remote sensing: Sensors characteristics, principle of spectroscopy, imaging spectroscopy, field conditions, compound spectral curve, spectral library, radiative models, processing procedures, derivative spectrometry, thermal remote sensing, thermal sensors, principles, thermal data processing, applications, data analysis, spatial resolution, spectral resolution, radiometric and temporal resolution, signal to noise ratio, data products and their characteristics, visual and digital interpretation, basic principles of data processing, radiometric correction, image enhancement, image classification, principles of LiDAR, aerial laser terrain mapping. | RECOMM | ENDED BOOKS | | |---|-------------------------------------|---| | Title | Author |
Publisher | | Remote Sensing and Image interpretation | T.M. Lilles and R.
W. Kiefer | 6th Edition,
John Wiley & Sons, 2000 | | Introductory Digital Image Processing: A Remote Sensing Perspective | John R. Jensen | 2nd Edition, Prentice
Hall,1995. | | 3. Remote Sensing Digital Image Analysis | Richards, John A.,
Jia, Xiuping | 5th Edition, Springer-Verlag
Berlin Heidelberg, 2013 | | 4. Principles of Remote Sensing | P.J.Paul Curran | 1st Edition, Longman
Publishing Group,
1984 | | 5. Introduction to The Physics and
Techniques of Remote Sensing | Charles Elachi,
Jakob J. van Zyl | 2nd Edition, Wiley Series,
2006 | | 6. Remote Sensing Principles and Image
Interpretation | F.F.Jr, Sabins | 3rd Edition, W.H. Freeman
& Co, 1978 | ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | | | PEEC-81
Elective | The second second | , | | | | | |---|-------|---|--|--|---|--|--|------------|--|-----------------|--|-------------------------------| | | | | | (Co | ommun | ication | System | Lab) | | | | | | | | | L | | | Т | | | Р | | Credi | ts | | | | | 0 | | | 0 | | | 4 | | 2 | | | | | Inte | rnal As | sessme | nt Mark | cs | | | | | 50 | | | | | End | Semes | ter Mar | ks | | | | | 50 | | | | Objectives: types of signals, their operation, the spectrum in time and frequency domain, generation, and demodulation of AM signals. Thorough knowledge would enable students to understand characterization and design considerations in communication systems. | | | | | | | | | | | | | | 12.000 | | 1 | | | | | of M | IATLAB | for so | olving | commun | ncation | | 12.000 | omes: | 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | eng
2. To l
and
3. To a
Mod
4. To f
sign | ineering
Learn th
Digital
analyze
dulation
amiliari
als usin | g proble
ne basic
Commu
the spe
n.
ze with
g MATL | ems.
es of sig
inication
ectrum,
genera
AB. | nals an
n.
in time
ation ar | and its of | oeratior
equency
odulatio | ns as us domain | ed in Ar
n, of Am | nalogue
plitude | | 12.000 | | 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | eng
2. To l
and
3. To a
Mod
4. To f
sign | ineering
Learn th
Digital
analyze
dulation
amiliari
als usin | g proble
ne basic
Commu
the spe
n.
ze with
g MATL | ems.
es of sig
unication
ectrum,
genera | nals an
n.
in time
ation ar | and its of | oeratior
equency
odulatio | ns as us domain | ed in Ar
n, of Am | nalogue
plitude | | 12.00 | | 30 30 30 30 30 30 30 30 30 30 30 30 30 3 | eng
2. To l
and
3. To a
Mod
4. To f
sign | ineering
Learn th
Digital
analyze
dulation
amiliari
als usin | g proble
ne basic
Commu
the spe
n.
ze with
g MATL | ems.
es of sig
inication
ectrum,
genera
AB. | nals an
n.
in time
ation ar | and its of | oeratior
equency
odulatio | ns as us domain | ed in Ar
n, of Am | nalogue
plitude | | Outco | omes: | | eng 2. To I and 3. To a Mod 4. To f sign | ineering
Learn the
Digital
analyze
dulation
familiari
als usin | g proble
ne basic
Commu
the spe
i.
ize with
g MATL
urse ou | ems. es of sig inication ectrum, genera AB. tcomes | mals and in time ation ar | and fre | oeration
equency
odulation
outcom | on of AS | ed in Ar
n, of Am
SK, PSK a | nalogue
plitude
ind FSk | | Outco | PO1 | PO2 | eng 2. To I and 3. To a Mod 4. To f sign Mappin | ineering Learn th Digital analyze dulation familiari als usin ng of co | g proble
ne basic
Commu
the spe
i.
ize with
g MATL
urse ou | erms. es of signification ectrum, genera AB. tcomes | mals and in time ation ar with property por | and free | oeration equency odulation outcom | on of AS | ed in Ar
n, of Am
SK, PSK a | plitude
ind FSI | | CO1
CO2
CO3 | PO1 M | PO2
M | eng 2. To I and 3. To a Mod 4. To f sign Mappin PO3 N | ineering Learn the Digital sensition of controls co | g proble ne basic Commu the spe i. ize with g MATL urse ou PO5 N | ms. es of sig inication ectrum, genera AB. tcomes PO6 M | nals and n. in time ation ar with property N | and free | oeration equency odulation outcom PO9 N | on of AS | ed in Ar
n, of Am
SK, PSK a
PO11
M | plitude ind FSk | #### List of Experiments: - To the use of MATLAB for generation of different signals important in communication theory. - To learn the use of MATLAB for different operations on signals. - 3. To identify the spectrum analyzer as used in frequency domain analysis using SIMULINK. - To identify various types of linear modulated waveforms in time and frequency domain representation using SIMULINK. - To analyze the spectrum, in time and frequency domain, of Amplitude Modulation using MATLAB. - To generate and demodulate amplitude shift keyed (ASK) signal using MATLAB. - 7. To generate and demodulate phase shift keyed (PSK) signal using MATLAB. - 8. To generate and demodulate frequency shift keyed (FSK) signal using MATLAB. - To generate a scatter plot for QPSK and BPSK using MATLAB. ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | (Wi | Core | EEC-813
Elective
ommur | TOTAL DES | Lab) | | | | | |------------|-------|------------------
---|-------------------------------|------------------------------|------------------------------|-------------------------|--|---------------------|--|--------------------|-----------| | | | | ι | 31 | | Т | | | P | | Credit | ts | | | | | C |) | | 0 | | | 4 | 2 | | | | | | It | Internal Assessment Marks 50 | | | | | | | | | | | | | E | End Semester Marks 50 | | | | | | | | | | | | | s
e
c | ignal ai
nable st
ommun | nalysis
tudents
ication | in com
to undo
systems | munica
erstand | tion sy
charact | stem.
erizatio | Thoroug
n and p | and mult
gh knov
paramete | vledge
ers in w | would | | Outco | omes: | 1
2
3
4 | . To fa
. To av | miliarizo
vare abo | e with the | ne diffe
losses i | rent wa
n the co | veform
mmunic | feature
cation c | n system
s via sim
hannel.
the com | ulation | | | | | 1000 | COLUMN TO THE REAL PROPERTY AND ADDRESS OF THE PERTY | | | | Description (Contracts) | The section of se | | September 10 septe | | tion. | | | | | Mappin | g of cou | rse out | comes | with pro | ogram o | utcome | es | | tion. | | | PO1 | PO2 | Mappin
PO3 | PO4 | rse out
PO5 | PO6 | with pro | PO8 | PO9 | PO10 | PO11 | | | CO1 | PO1 | I standardon | | | | 1 | 1 | 1 | 1 | 1 | | | | CO1
CO2 | | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | | | N | PO2
M | PO3
N | PO4
M | PO5
N | PO6
N | PO7
N | PO8
M | PO9
N | PO10
S | PO11
N | PO12
N | #### List of Experiments: - 1. To study the baseband communication using Trainer KIT. - 2. To study the CDMA for both multipath and multiuser on Trainer KIT. - 3. To study the spread spectrum- DSSS modulation and demodulation using Trainer KIT. - To study and familiarize with MATLAB and its function widely used in wireless communication simulation and plot using MATLAB simulation - 5. To study and Develop an QPSK detector and understand the relation between BER and SNR. - To study and understand the various waveforms, their properties and process to capture transmitted waveforms and their processing using MATLAB simulation. - 7. To Study the Propagation Path loss Models for Free Space Propagation using MATLAB. - To Study the Propagation Path loss Models for Link Budget Equation in Satellite Communication using MATLAB. - To Study the Propagation Path loss Models for Carrier to Noise Ratio in Satellite Communication using MATLAB. - 10. To Study the various pulse shaping filters widely used in wireless communication system - 11. To study and understand the features of matched filter. - To study the importance of coarse and fine synchronization, effect of frequency offset and its correction. - 13. To Study tools to find out several unknown parameters of wireless communication system through multi-dimensional signal analysis #### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | 1111 | | Optica | al Com | PCEC-8
municat | | tem Lal | o | | | | | |-------------------|-------------|-------------------------------|---|--|--|---|--|---|---------------------------------------|---|---|---|--| | | | | L | • | | Т | T | | Р | | Credi | ts | | | | | | 0 | | | 0 | | | 4 | | 2 | | | | | | Inte | rnal As | sessme | nt Mar | ks | • | | | | 50 | | | | | | End Semester Marks 50 | | |
| | | | | | | | | | Cours | se
omes: | into miti eval com 1. / 2. I | variou
gation.
uation
munica
Able to
and the
Enables
Ability t | us opti
Finally,
of option ne
undersi
ir mitiga
the impose
to mode | cal no, it will modern twork a tand va ation. plemen all and a | nlineari
I provid
n option
and OFD
rious lo
tation o | ties in le platf cal co OM. sses occ of opticathe opti | optica
orm fo
ommuni
curs in o | r the sication optical communication | also givenunication network on munication ation sys | ion an
to desi
orks, v
ication
link.
stem fo | d thei
gn and
wireless
system
r highe | | | | | | echnol | ogy. | 8620 | | | | | 50 | | nication | | | | | | echnol | | urse ou | tcomes | | | | 90 | | nication | | | | PO1 | | echnol | | urse ou | tcomes | | | | 90 | | PO12 | | | CO1 | PO1
M | | echnol
Vappin | g of co | 1 | T | with p | rogram | outcon | nes | | | | | | 1 | PO2 | echnol
Mappin
PO3 | g of cou | PO5 | PO6 | with pi | rogram
PO8 | outcon
PO9 | PO10 | PO11 | PO12 | | | CO1
CO2
CO3 | М | PO2 | Mappin
PO3 | g of cou | PO5
N | PO6
M | with pr | PO8 | outcon
PO9
N | PO10 | PO11
M | PO12
N | | #### List of Experiments: - To study the effect characteristics of Mach-Zender modulator in Opti-system. - 2. Designing of an intensity modulator using Lithium Niobate Mach-Zehnder modulator in Opti-system. - 3. To establish a point-to-point optical communication link on Opti-System and optical kit. - 4. Characterization of laser diode and photodetector using simulator/light runner. - Characterization of the electrical parameter of the intensity modulator using Opti-System. - Measurement of attenuation in optical fiber using Opti-System simulator and light runner. - 7. Measurement of dispersion in optical fiber using Opti-System simulator and light runner. - 8. Minimization of the effect of dispersion in optical communication link. - 9. Evaluation of power budget of an optical fiber link using Opti-System simulator and light runner. - 10. Designing of a DWDM point-to-point link using Opti-system. - 11. To study the effect of channel spacing and operating bit rate in DWDM optical network. - 12. To study the effect of four-wave mixing in DWDM network in Opti-system. - 13. To study the effect of cross-phase modulation in DWDM network in Opti-system. - 14. Designing of an all-optical wavelength convertor using Opti-system. - Experimental study of SMF cutting and splicing. - 16. Demonstration of SMF connection. - 17. Designing of external metal deposition-based PCF-SPR sensor model. - Modelling of spectroscopy-based sensing setup for liquid analytes. #### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | Micr | Powave | CEC- 82:
Integrat | 78 | uits | | | | | | |-------|----------|-------|----------------------------------|---|---|--|--------------------------------|----------------------------------|------------------------------|-------------------------------------|---------|--------|--| | | | | | L | | | Г | | Р | | Credits | | | | | | | | 3 | | | 1 | | 0 | | 4 | | | | | | | Session | nal Mar | ks | | | 300 | | | 50 | | | | | | | End Se | mester | Examin | ation IV | larks | | | 50 | | | | | Cours | se Outco | omes: | the va
active
1. To
and | rious co
microw
gain kno
d lumpe | oupler for
ave circo
owledge
d, elem | or networks and a subsection of the o | ork des
I nonlin
the des | ign; stu
ear RF c
ign of v | dy the dircuits.
arious s | ner filte
different
triplines | devices | of | | | | | | 3. Abi
cou
4. Sel | lity to
iplers. | analyzo | e and | model | networ | k desig | e planar
gn base
ircuit ar | d on v | | | | | | | Mapping | of cour | se outc | omes w | ith pro | gram ou | itcomes | 5 | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | | CO1 | M | M | W | N | N | S | N | N | N | N | w | N | | | CO2 | S | M | M | N | N | S | N | N | M | N | M | M | | | CO3 | M | S | N | N | M | S | N | N | N | N | N | N | | | CO4 | N | N | M | S | N | M | M | N | M | N | M | М | | | | | | | Uni | t-l | | | | | | | 12 hrs | | **Introduction:** Review of transmission lines, foundations of microstrip lines, striplines, higher modes in microstrips and strip lines, slot lines, coplanar waveguides, coplanar strips, launching techniques - coaxial line to microstrip transition, rectangular waveguide to microstrip transition, microstrip to slot-line transition, microstrip to coplanar waveguide (CPW) transition, lumped components - capacitors, inductors and resistors. Unit-II 12 hrs Microwave planar filters: Periodic structures, filter design by the image parameter method, filter design by the insertion loss method, filter transformations, filter implementation, stepped-impedance low-pass filters, coupled line filters, filters using coupled resonators. Unit-III 12 hrs **4-Port network design:** Review of network design, even and odd-mode analysis, branch-line couple, branch-line coupler with improved coupling performance, branch-line coupler with multiple sections, introduction to hybrid-ring couplers, qualitative description and complete analysis of hybrid-ring couplers, hybrid-ring couplers with modified ring impedances, introduction to parallel-coupled lines and directional couplers, even and odd-analysis of parallel-coupled lines, coupled-line parameters, multiple-section directional couplers. # 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-IV 12 hrs **Nonlinear RF drcuits:** Review of non-linear circuits, power gain relations, simultaneous conjugate matching, stability considerations, power gain for matched, unmatched, unilateral conditions, noise characterization and design options, switches - PIN diode switches, FET switches, mems switch, variable attenuators, phase shifters, detectors and mixers, amplifiers - small signal amplifiers, low noise amplifiers, power amplifiers, oscillators. | | RECOMMENDED BOOKS | | |---|--|---| | Title | Author | Publisher | | Microwave Engineering | D.M. Pozar | 3 rd Ed., John Wiley &
Sons, 2004 | | Microwave Engineering Using
Microstrip Circuits | E.H. Fooks and
Zakarevicius | Prentice-Hall, 1990 | | Networks and Devices using Pla
Transmission Lines | nar Franco di Paolo | CRC Press, 2000 | | 4. RF Circuit Design | R. Ludwig and
P. Bretchko | Pearson Education,
2000 | | 5. Microwave and RF Engineering | Roberto Sorrentino
and Giovanni Bianchi | John Wiley & Sons,
2010 | #### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | | , | PCEC-8
/LSIDes | | | | | | | | |-------|---------|-------|--|---|---|---|--|--|---|---|-----------------------------------|---------------------|--| | | | | | L | | | Т | | Р | | Credits | 5 | | | | | | | 3 | | | 0 | | 0 | | 3 | | | | | | | Sessio | nal Mai | rks | | | il. | | | 50 | | | | | | | End Se | mester | Exami | nation P | Vlarks | | | | 50 | | | | Cours | e Outco | omes: | examir
design
1. Mo
cha
2. De
3. Ide
VLS | ne the odel the aracteri sign cor ntify th | basic behavi
stics of
mbination
e source
t and ar | our of N
inverte
onal
and
es of dy
nalyze t | MOS tra
r.
d seque
mamic,
he perfe | of gate
insistor
intial cir
leakage | and un
cuits us
power
es of VI | design
derstand
derstand
sing CM0
r compo
LSI circui | and suld the swood gates nents in | osystem
ritching | | | | | | Mappin | | | | | | | nes | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | | CO1 | N | N | N | N | S | M | M | N | N | N | w | N | | | CO2 | S | M | M | N | N | S | М | N | М | N | M | M | | | CO3 | S | M | N | S | N | N | N | N | W | N | M | M | | | CO4 | N | S | M | N | N | S | w | N | N | N | M | M | | | | | | | Un | it-I | | | | | | | 14 hr | | **Device physics:** Review of MOS transistor theory, MOS device equations - basic dc equations, concept of threshold voltage, second order effects and small signal ac characteristics. **Inverter analysis:** Complementary CMOS inverter, DC characteristics, ratio, no ise margin, CMOS inverter as an amplifier, static load CMOS inverters, pseudo NMOS inverter, saturated load inverters, cascode inverter, TTL interface inverter, differential inverter, transmission gate, tri-state inverter and Bi-CMOS inverter. Unit-II 14 hrs **Fabrication process:** Basic MOS technology, NMOS and CMOS process flow, stick diagrams, design rules, layout design and tools and latch up in CMOS. Circuit characterization and performance estimation: Resistances and capacitance estimation, SPICE modeling, switching characteristics, delay models, rise and fall times, propagation delays, body effect, CMOS gate transistor sizing, power dissipation, design margining and scaling principles. Unit-III 10 hrs CMOS drcuit and logic design: CMOS logic gate design, basic physical design of simple logic gates. CMOS logic structures, clocking strategies, low power CMOS logic structures, chip input and output (I/O) structures. ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-IV 10 hrs **VLSI design methodologies:** VLSI design flow, structured design strategies, VLSI design styles and chip design options. Subsystem structures: Arithmetic logic unit (ALU), shifters, memory elements, high density memory structures, finite state machines (FSM) and programmable logic arrays (PLA) | RECOMMENDED BOOKS | | | | | | | | | |---|-----------------------------------|----------------------------|--|--|--|--|--|--| | Title | Author | Publisher | | | | | | | | 1. CMOS Digital Integrated Circuits | Sung- Mo Kang, Yusuf
Leblebici | TMH, 2003 | | | | | | | | Basic VLSI Design, Systems And Circuits | Pucknell DA and Eshraghian
K | PHI, 1988 | | | | | | | | 3. Integrated Circuits | KR Botkar | Khanna Publishers,
2015 | | | | | | | ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | Adva | P
nced Dig | EEC-82 | | .o.c.ina | | | | | |-------|---------|------|--|---|---|---|--|---|---|---|----------------------------------|---| | | | | | L | iceu Di | gitai Sig | T T | | Р | Ī | Credits | | | | | | | 3 | | | 0 | _ | 0 | | 3 | | | | | | Session | | ks | | • | - | | | 50 | | | | | | | | Examin | ation M | arks | | | | 50 | | | Cours | e Outco | mes: | transfo
(FFT) ar
will be
and es
signal p
1. Mas
don
disc
2. Und
as s
3. Lea
with
4. Abil | rm, dis
nd how
realized
timatio
processi
ster the
nain, u
crete co-
derstand
ome of
rn the lindesire
lity to i | crete For FIR and I. Then to the impersor in the impersor in the impersor in the impersor its applements applements for its applements in the impersor | ourier to
I IIR filte
the coun
dization
sample
sentation
transform.
plemen
ications
rms of
ency resent adap | ransformers can be algorited to algorite rate common discontinuous contraction | m (DFT) pe imple study the chms are exercised crete-terete Fe of the Di IIR filte |) and femented and the sign ourier FT in terms, and | m method
ast Four
d, and the
ept of lin
concept
mals in
transfor
rms of the
l how to
g algorithe | the free
me (DFT
ne FFT, a | esform
ectures
diction
eltirate
quency
) and
as well
filters | | | | | | | rious mu | | | | | ***** | | | | | PO1 | PO2 | Mappin
PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | CO1 | S | M | N | N | N | N | M | N | N | N | M | N | | CO2 | М | N | N | N | N | M | M | N | N | N | w | N | | CO3 | S | M | M | M | N | S | N | N | N | N | M | M | | CO4 | N | S | N | N | M | N | M | N | M | N | М | 3330 | | | | , | _ | _ | _ | | 200,000 | _ | _ | _ | | IN | | COS | M | N | N | N | S | M | S | N | N | N | N | N | **Discrete time signals and systems:** Advantages and limitations of digital signal processing, review of discrete time signals and system analysis using z transform and Fourier transform, properties and applications of DFT, FFT and decimation algorithms, DCT and its applications in multimedia coding. Unit-II 12 hrs **Design of digital filters:** Review of structures for discrete time systems, design of digital FIR and IIR filters. **Real time DSP:** General and
special purpose hardware for DSP, real time digital signal processing using TMS320 family, implementation of DSP algorithm on digital signal processors. ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-III 12 hrs **Estimation and prediction:** Linear prediction and optimum linear filters, forward & backward linear prediction, Levinson-Durbin algorithm, Schur algorithm, properties of linear prediction error filter, Wiener filters for filtering and over sampling. **Equalization algorithms:** Adaptive equalizer, the zero-forcing algorithm, decision feedback equalizer, block decision feedback equalizer, LM S algorithm convergence properties of LMS algorithm, recursive least squares algorithm, Kalman filtering, blind equalization. Unit-IV 12 hrs **Multi-rate signal processing:** Introduction, decimation and interpolation, sample rate conversion, efficient poly-phase structures, design of phase shifters, filter banks, quadrature mirror filters, applications of digital signal processing. | RECOMMENDED BOOKS | | | | | | | | | | |---|-----------------|------------------------|--|--|--|--|--|--|--| | Title | Author | Publisher | | | | | | | | | 1. Digital Signal Processing | John G.Prokis | Prentice Hall of India | | | | | | | | | 2. Digital Signal Processing | Oppenheuim | Prentice Hall of India | | | | | | | | | 3. Digital Signal Processing: A Computer-
Based Approach | Sanjit K. Mitra | Tata McGraw Hill | | | | | | | | ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | PEEC-821B
Soft-Computin | g | | | | | | |-----------------------|---|---|--|--|--|--|--|--| | | L | P | Credits | | | | | | | | 3 | 0 | 0 | 3 | | | | | | | Sessional Marks | Sessional Marks | | | | | | | | | End Semester Examin | nation Marks | | 50 | | | | | | Course
Objectives: | study how to apply for
engineering problem
applications; know a
genetic algorithm. N | uzzy logic and re
is; understand th
bout the compo
ext focus to gain | asoning to hand
ne features of i
nents and build
n insight onto i | nputing. The course will
lle uncertainty and solve
neural network, and its
ling block hypothesis of
neuro fuzzy modeling &
through Support vector | | | | | #### Course Outcomes: - 1. Analyze the genetic algorithms and their applications - Gain knowledge to develop genetic algorithm and support vector machinebased machine learning system. - 3. Write genetic algorithm to solve the optimization problem. - 4. Analyze various neural network architectures. - Understand fuzzy concepts and develop a fuzzy expert system to derive decisions. - 6. Able to model neuro fuzzy system for data clustering and classification. #### Mapping of course outcomes with program outcomes | | PO1 | P
O
2 | РОЗ | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |-----|-----|-------------|-----|-----|--------|-----|-----|-----|-----|------|------|--------| | CO1 | S | М | N | N | N | M | N | M | W | N | N | N | | CO2 | S | M | M | N | M | M | S | N | N | N | M | М | | CO3 | N | М | N | N | N | M | M | N | N | S | M | М | | CO4 | N | M | N | N | N | w | N | M | M | N | M | w | | CO5 | S | N | S | N | N | S | S | N | N | N | M | М | | CO6 | S | N | W | N | S | w | M | N | N | N | N | N | | | | 77 | | | Unit-I | | | eA. | | | | 12 hrs | **Neural network fundamentals:** Basic concepts, human brain, artificial neuron model, neural network architectures-Rosenblatt's perceptron, ADALINE and MADALINE networks, neural network characteristics, learning methods, architecture taxonomy, bac k-propagation network (BPN), BPN architecture, perceptron model, single layer network, multilayer perceptron model, back-propagation learning, back-propagation algorithm, tuning parameters effect and parameter selection, application of ANN to channel equalization. ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-II 12 hrs **Fuzzy logic fundamental:** Crisp sets, fuzzy sets, membership function, basic fuzzy set operations, fuzzy set properties, crisp relations, fuzzy relations, fuzzy Cartesian product, operation on fuzzy relations, fuzzy systems, crisp logic, predicate logic, fuzzy logic, fuzzy rule based system and defuzzification methods. Unit-III 12 hrs **Genetic algorithm fundamentals:** Basic concepts, biological background, working principle, encoding, fitness function, reproduction including roulette-wheel selection, Boltzmann selection, tournament selection, rank selection and steady state selection, design of rapid nickel cadmium battery charger and rule base generation from numerical data using GA. | Unit-IV: | 12 hrs | |--|---------------------| | Genetic modeling : Inheritance operators, cross-over-single site crossover, multipoint crossover, uniform crossover, matrix crossover, crossover rate, and duplication, mutation operator, generation cycle, convergence of genet | inversion, deletion | | RECOMMENDED BOOKS | | | | RECOMMENDED BOOKS | | | | | | | | | |----|--|--|-------------|--|--|--|--|--|--| | | Title | Author | Publisher | | | | | | | | 1. | Neural Networks, Fuzzy Logic and
Genetic Algorithms | S. Rajasekaran and G.A.
Vijayalakshmi Pai | PHI | | | | | | | | 2. | Artificial Neural Networks | B. Yegnarayana | PHI | | | | | | | | 3. | Introduction to Applied Fuzzy Electronics | Ahmad M. Ibrahim | PHI | | | | | | | | 4. | Fuzzy Logic with Engineering
Applications | J T Ross | McGraw-Hill | | | | | | | ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | n | P
Digital I | EEC- 82
mage P | STATE STATE | ng | | | | | |-----|---------|-----|--|--|---|--|--|---|--|--|--|---------------------------| | | | | | L | | Т | | Р | | C | redits | | | | | Ī | | 3 | | 0 | | 0 | | | 3 | | | | | | Session | al Mark | cs | | • | | | 50 | | | | | | | End Ser | mester l | Examina | ation M | arks | | | | 50 | | | | e Outco | | filtering
algorith
reconst
1. Exar
app
2. Sho
segr
3. To
mor | g of noise
ruction,
mine vari
lying vari
w how
mentation
phologi | se and in
advance,
image
rious filt
higher
on, repr
ulate be
cal filte | mage enced ima
segment
pes of intering te
relevel
resentate
oth bir | nhancer
ge anal
tation a
mages, i
echnique
image
ion can
nary ar
perator | ment; di
lysis like
and edge
ntensity
es.
concept
be impli
nd gray
s to ach | esign, a
e image
e detect
/ transfo
ts such
emente
/scale
ileve a c | cessing of
nalyze a
e comproduced compation technology
as ed,
as ed,
and us
digital
desired replication | nd implession, niques. is and ge detested. images esult. | ement
image
ection, | | | | | Mappin | g of cou | ırse out | comes | with pro | ogram o | utcome | es | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | CO1 | S | M | N | S | M | M | M | N | N | N | N | N | | CO2 | S | М | M | S | N | M | M | N | N | N | М | N | | CO3 | N | N | M | S | N | M | M | N | S | N | W | N | | CO4 | M | S | M | N | N | S | M | N | M | N | М | M | | | | | | <u>Uni</u> | t-l | | | | | | | 12 hrs | **Digital image fundamentals:** Scenes and images, different stages of image processing and analysis, components of image processing system, visual preliminaries, brightness adaptation and contrast, acuity and contour, texture and pattern discrimination, shape detection and recognition, color perception, image formation, geometric and photometric models, digitization including sampling, quantization and digital image visual details. Unit-II 12 hrs Image enhancement and restoration: Contrast intensification comprising of linear stretching, non-linear stretching, fuzzy property modification, histogram specification, modifying grey level co-occurrence matrix and local contrast stretching, smoothing including image averaging, mean filter, ordered statistic filter, edge-preserving smoothing and low pass filtering, image sharpening including high-pass filtering and homomorphic filtering, image restoration fundamentals, minimum mean square error restoration least square error restoration and constrained least square error restoration. Unit-III 12 hrs **Image compression:** Fundamentals of image compression, error criterion, lossy compression including transform compression, block truncation compression, vector
quantization compression and lossless compression including Huffman coding method. # 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Image segmentation and edge detection: Region extraction, pixel based approach including feature thresholding, optimum thresholding and threshold selection methods, edge detection fundamentals, derivative operators including Roberts, 4-neighbour, Prewitt and Sobel operators, Canny edge detector, Laplacian edge detector, Laplacian of Gaussian edge detector. | RECOMMENDED BOOKS | | | | | | | | | |--|---------------------|-----------------------|--|--|--|--|--|--| | Title | Author | Publisher | | | | | | | | 1. Digital Image Processing | Rafael C. Gonzalez | Pearson | | | | | | | | 2. Digital Image Processing and Analysis | Chanda and Majmuder | PHI | | | | | | | | Computer Vision and Image Processing | S Nagabhushana | New Age International | | | | | | | ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | Artificia | | EEC-82 | | Learn | ing | | | | |-----|---------|-------|---------------------------------------|--|---|--|---|--|--|--|---|--| | | | | | L | miceni | T | nu Deep | P | ilig | (| Credits | | | | | | | 2 | | 1 | | 0 | | | 3 | | | | | | Session | nal Mari | ks | | | | | | 50 | | | | | | End Se | mester | Examin | ation M | larks | | | | 50 | | | | e Outco | omes: | Deep Levision to Solve 1. Unc. 2. App | earning tasks. ourse ches, e. nove to Netwo ts will a e variou | provide
g., Bay
mode
orks, A
cquire t
s real-li
d the dit | s intro
esian C
rn Dee
utoenco
he know
fe probl
fference | duction
lassifica
p Learn
oders e
wledge o
ems.
e between | a possi
to tr
tion, M
ling arc
etc. Up
of apply
en class | ble solu
radition
ultilaye
hitectur
on cor
ring Dec | on a charaction to s al Mack r Percep res like mpleting ep Learni n and reg | uch Cor
nine Le
stron et
Convol
the c
ing tech | earning
c. and
utiona
course
nique | | | | | 4. Acc | rits and
Juire the
ious oth | demeri
e know
er tech | ts.
ledge o
niques. | f latest | trends | in deep | rchitect
learnin | | | | | , | | Mappin | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | CO1 | 3 | 3 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | | CO2 | 3 | 3 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 3 | 2 | | CO3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 0 | 3 | 2 | | CO4 | 3 | 3 | 3 | 1 | 3 | 2 | 2 | 1 | 1 | 0 | 3 | 2 | | | | | | Uni | i+_I | | | | | | | 12 hr | **Introduction:** Introduction to Deep Learning, History of Deep Learning, Bayesian Learning, Decision Surfaces, Linear Classifiers, Linear Machines with Hinge Loss. Optimization Techniques, Gradient Descent, Stochastic GD, Batch Optimization, Momentum Optimizer, RMS Prop, Adam. Unit-II 12 hrs **Neural Network Architectures**: Introduction to Neural Network, Feed Forward Neural Networks, Multilayer Perceptron, Back Propagation Learning, Convolutional Neural Network, CNN Operations, Building blocks of CNN, Transfer Learning, Google Net, Res Net. Transformer architecture. Regularization: Bias Variance Trade-off, L2 regularization, Early stopping, Dataset augmentation ## 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-III 12 hrs **Normalization in Neural Network:** Revisiting Gradient Descent, Effective training in Deep Neterally stopping, Dropout, Batch Normalization, Instance Normalization, Group Normalization. **Unsupervised Learning:** Unsupervised Learning with Deep Network, Autoencoders, Denoising auto encoders, Sparse auto encoders, Variational Autoencoder, Encoder Decoder Models, Attention Mechanism, Attention over images. Unit -IV 12 hrs **Deep Learning Architectures:** Recent Trends in Deep Learning Architectures, Residual Network, Skip Connection Network, Classical Supervised Tasks with Deep Learning, Image Denoising, Semantic Segmentation, LSTM Networks. Generative Modeling with DL, Generative Adversarial Network. | Recommended Books | | | | | | | | | |--|---|-------------------------------|--|--|--|--|--|--| | Title | Author | Publisher | | | | | | | | 1. Deep Learning | lan Goodfellow
and Yoshua Bengio | An MIT Press book.
(2019). | | | | | | | | Deep Learning for Coders with Fastai and PyTorch | Jeremy Howard
and Sylvain Gugger | O'Reilly (2020). | | | | | | | | 3. Deep Learning From Scratch | Seth Weidman | O'Reilly (2020). | | | | | | | | 4. Deep Learning with PyTorch | Eli Stevens, Luca
Antiga, Thomas
Viehmann | Manning Publications. (2019). | | | | | | | #### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | | | EEC-82 | | 200 | | | | | |--------------------------------|---------|-----|--|------------------------|----------------------|--------------------|-----------------|---------|---------|---------------------|---------|------| | | | | | | lectron | ic Produ | ict Desi | _ | P | | Credits | | | | | | L | | | | 0 | _ | 0 | 3 | | | | Sessional Marks | | | | | | | | 50 | | | | | | End Semester Examination Marks | | | | | | | | 50 | | | | | | Cours | e Objec | | reliabii
require | lity, cor
ed for el | ntrol pa
lectroni | nel de
c indust | sign, th
ry. | ermal | conside | knowled
ration a | and pac | | | Outco | | | Explain reliability and methods of solving complex problems. Explain the importance of aesthetics and ergonomics in electronics product design. Explain need of control panel design and thermal consideration in electronic industry. Explain the types of interconnections for packaging. | | | | | | | | | | | | 600 | , j | Mappin | g of cou | rse out | comes | with pro | ogram o | utcom | es | 05 O | | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | CO1 | W | N | N | N | N | M | N | М | N | N | N | N | | CO2 | M | M | S | М | N | S | M | N | N | N | M | M | | соз | M | M | S | S | N | S | M | N | S | N | S | M | | CO4 | N | M | M | N | N | M | N | N | M | N | M | N | | Unit-I | | | | | | | | | | 11hrs | | | System reliability concepts: Introduction to concepts of reliability, nature of reliability problems in electronics equipment, series configurations, parallel configuration, mixed configuration, methods of solving complex systems, mean time to failure (MTTF) and mean time between failure (MTB) of systems. maintainability, availability concepts, system downtime, mean time to repair (MTTR), fault tree analysis-concepts and procedures, rules for fault tree construction. Unit-II 12hrs **Ergonomics and aesthetics in electronics product design:** Overview of electronics product design, top-down and bottom-up approach, considering power supply design as an example, ergonomics and display w.r.t. ergonomics and aesthetics consideration. Unit-III 12 hrs Control panel design and thermal consideration: Types of controls, design and organization of control panel, engineering consideration, layout of components, selection of materials, sheet metals and plastic, structural design and control cabinets fabrications, thermal management of electronics equipment, thermal design consideration, component level, board level, system level, fans and system operating characteristics, heat sink design. Unit-IV 10 hrs Packaging: Design consideration for inter-connections, types of inter-connections, wires, cables, connectors, treatment of vibration, grounding | RECOMMENDED BOOKS | | | | | | | | | |--|--|--|--|--|--|--|--|--| | Title | Author | Publisher | | | | | | | | Materials and Processes in Manufacturing | Ernest Paul De
Garmo, J.T. Black,
Ronald A. Kohser | 12 th Edition, John Wiley
& Sons. | | | | | | | | 2. Advanced Thermal of Electronics Equipment | Raiph Remsburg | Springer, 2011 | | | | | | | | 3. Product Design of Electronics Equipment | V.S. Bagad | 4 th Edition 2009,
Technical Publication | | | | | | | ### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | | | EEC-82
Comm | | n | | W. | | | | |----------------|------------------------------------|---|--|---|---|--|---|--|---------------------------------------|----------------------------------|----------------|---------|--| | | | | | L | | | T | | Р | | Credits | | | | | | 1 | | 0 | 3 | | | | | | | | | | | | | Sessiona | l Marks | | | | | | 50 | | | | | | | | End Sem | ester Ex | kaminat | ion Ma |
rks | | | | 50 | | | | Objec | tives: | | satellite
modulati
commun
in this co | ion, mu
ication | ltiplexir | ng and | multiple | access | techni | ques us | ed in sa | tellite | | | Cours
Outco | | | 2. State
equat
multip
3. Solve
budge | ange co
various
ions, su
ble acce
numerio
et for the | mmunion
aspects
b-syster
ss scher
cal prob
e given | related
related
ms in a s
mes.
lems re
parame | ystem.
to sate
satellite,
lated to
ters and | llite syst
, link bu
orbital
I condit | tems su
dget, m
motion
ions. | ch as orb
odulatio
and des | oital
n and | | | | | | | Mappin | g of cou | | | with pro | ogram c | utcome | 25 | | | | | | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO | | | | | | | | | | PO11 | PO12 | | | CO1 | M | W | N | S | N | W | N | M | W | N | N | N | | | CO2 | М | N | N | S | S | N | N | N | M | N | N | N | | | CO3 | W | M | M | N | M | S | N | S | N | S | M | M | | | | | | | Uı | nit-l | | | | | | | 12hrs | | Architecture of satellite communication system: Principles and architecture of satellite communication, brief history of satellite systems, advantages, disadvantages, applications, and frequency bands used for satellite communication and their advantages/drawbacks. **Orbital analysis:** Orbital equations, Kepler's laws of planetary motion, apogee and perigee for an elliptical orbit, evaluation of velocity, orbital period, angular velocity etc of a satellite, concepts of solar day and sidereal day. Unit-II 12 hrs Satellite sub-systems: Architecture and roles of various sub-systems of a satellite system such as telemetry, tracking, command and monitoring (TTC & M), attitude and orbit control system (AOCS), communication sub-system, power sub-systems, antenna sub-system. Satellite sub-systems: Architecture and roles of various sub-systems of a satellite system such as telemetry, tracking, command and monitoring (TTC& M), attitude and orbit control system (AOCS), communication sub-system, power sub-systems, antenna sub-system. Unit-III 10 hrs Satellite link budget: Flux density and received signal power equations, calculation of system noise temperature for satellite receiver, noise power calculation, drafting of satellite link budget and C/N ratio calculations in clear air and rainy conditions, case study of personal communication system (satellite telephony) using LEO. # 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | Unit-IV | |---------| |---------| **Typical phenomena in satellite communication**: Solar eclipse on satellite, its effects, remedies for eclipse, sun transit outage phenomena, its effects and remedies, Doppler frequency shift phenomena and expression for Doppler shift, modulation and multiple access schemes used in satellite communication, typical case studies of VSAT, DBS-TV satellites and few recent communication satellites launched by NASA/ISRO, GPS. | RECOMMENDED BOOKS | | | | | | | | | | |---|-----------------------------|-----------------------------------|--|--|--|--|--|--|--| | Title | Author | Publisher | | | | | | | | | Satellite Communications | Timothy Pratt and
Others | Wiley India, 2nd edition, 2010. | | | | | | | | | Fundamentals of Satellite Communication | S. K. Raman | Pearson Education India,
2011 | | | | | | | | | 3. Digital Satellite Communications | Tri T. Ha | Tata McGraw Hill, 2009 | | | | | | | | | 4. Satellite Communication | Dennis Roddy | McGraw Hill, 4th Edition,
2008 | | | | | | | | | | | | | | | PEEC- 82 | | 14000 | | | | | |------------------|-------------------|---|--|--|---|--|---|--|---|--|--|---| | | | | | | Digital C | | ogic Des | 1 | | | C | _ | | | | | | <u>L</u> | - | T | | _ | P | | Credit | 5 | | | | | | 3 | Local | 0 | | | 0 | - | 3 | | | | | | | nal Mar | | | | | | | 50 | | | _ | e Objec | ••::::::::::::::::::::::::::::::::::::: | | | Examin | | | assones across | | hensive | 50 | | | Course | e Outco | mes: | used to
treated
diagrar
and ra
progra
1. To
with
2. Ableasy
3. Abi | o solve d, included s and ces and mmable learn di n variou e to co nchrono lity to | enginee
ding fini
state ta
d hazard
e logic, s
ifferent
us practi
design,
ous sequ
analy | ering pro
ite state
ables, o
ds; anal
such as
types o
cal issu-
simular
uential o
ze an | oblems. e machi ptimizat yze and ROMs, F of digita es relate te, and circuits. d desi | Topics ines, M tion, asy I design PLDs, FP I system ed to the built gn sim | in seque
ealy and
nchron
simple
GAs and
to
sand to
eir design
synchron
nple sy | onous s | cuit de
mode
uential
s comp
stand a
equent
compo | sign are
ls, state
circuits,
osed of
and deal | | | | | | | urse ou | | | | | and CPLE
es | os. | | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | P08 | P09 | PO10 | PO11 | PO12 | | CO1 | S | S | S | N | N | S | N | N | M | N | M | N | | CO2 | М | М | S | S | N | S | M | N | M | N | S | M | | CO3 | М | S | S | M | M | S | M | N | M | N | S | S | | | | | | Uı | nit-l | | | | | | | 12 hrs | | synchr
times, | onous
tristate | state r
e logic : | nachine | design
ses, Me
ization, | and an
aly and | alysis-n
Moore | nodels,
FSM de | latches
sign, de | and flip
sign of | and the
o-flops, s
iterative
elining. | setup a | nd hold | | analys | is and o | design- | | inputs
for asy | : Synch
nchrono | us FSM | | | | synchro
nation of | | nachines | | | | | | <u>Un</u> | it-III | | | | | | | 12 hr | | | | | | | | | | | | ers - PL
clock bu | | | | | | - | • | | it-IV | | | | | | | 12 hrs | | | | | | ogramr | nable lo | | | | | rammab | | and the second | | RECOMMENDED BOOKS | | | | | | | | | | |---------------------------|----------------------------|--------------------|--------------------------------------|--|--|--|--|--|--| | Title | Author | Publisher | | | | | | | | | 1. Engineering | g Digital Design | Richard F Tinder | 2nd Ed., Academic Press, 2000 | | | | | | | | 2. Digital Desig | n-principles and practices | John F Wakerly | 3rd Ed., Pearson Education Asia,1999 | | | | | | | | 3. Digital Log
Design, | gic and State Machine | David J Comer | 3rd Ed., Oxford University Press | | | | | | | | 4. An Enginee
Design | ring Approach to Digital | William I Fletcher | PHI, 1980 | | | | | | | # 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | | | PCEC-82
I Desigi | | | | | | | | | | |---------------------------|-------------|----------|--|--|--|---|----------------------------|---------------------|----------|---------------------------------|----------|--------|--|--|--| | | | | ı | | Credi | ts | | | | | | | | | | | | | | 0 0 4 2 | | | | | | | | | | | | | | Internal Assessment Marks | | | | | | | | | | | 50 | | | | | | End Semester Marks | | | | | | | | | | | 50 | | | | | | Cours | se
omes: | 5.
6. | mplifier
Ability
Ability
and p
Ability | s.
/ to ana
/ to esti
ower co | lyze CM
mate a
onsump
sign logi | IOS inve
nd com
tion of a
c circui | erter.
pute the
NMOS | e resista
/CMOS. | ince, ca | national
pacitano
ic CMOS | ce, indu | ctance | | | | | | | 8. | | tive crit | eria and | l design | constra | ints | | oject ha | aving a | set of | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | | | | CO1 | N | M | N | M | N | N N | N N | M | N | 5 | N | N | | | | | CO2 | M | M | W | M | N | M | N | N | N | 5 | N | N | | | | | CO3 | W | M | N | N | N | 0.00 | N | N | 7.77 | 5 | M | N | | | | | | | - | | | - | M | - | | M | | 570 | S | | | | | CO4 | M | M | M | S | N | S | M | N | M | S | M | 1 | | | | #### List of Experiments: - 14. Design of NMOS and CMOS inverters for DC signal. - 15. NMOS and CMOS inverters -transient characteristics and switching times. - 16. Evaluation of resistance in NMOS/CMOS. - 17. Evaluation of capacitance and inductance in CMOS. - 18. Design of multiplexers and demultiplexers. - 19. Design of full adder and comparator. - 20. Design of MOS capacitor for small signal. - 21. Design and simulate common source (CS) amplifier. - 22. Design and simulate cascode and active current mirrors. - 23. C-V and I-V characterization of MOS capacitors. - 24. Modeling and simulation of NMOS and CMOS circuits using SPICE. ### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | | F | PEEC-82 | 4 A | | | | | | | | |---------------------------|-------------------|---------------------|--
--|--|--|--------------------------------------|--|---------------------------|-------------------|---------------------|---------|--|--| | | | | | | Core | Elective | e Lab -2 | ! | | | | | | | | | | | | (N | /licrowa | ve Engi | neering | g Lab) | | | | | | | | L T P | | | | | | | | | | | | ts | | | | 0 0 4 | | | | | | | | | | 2 | 2 | | | | | Internal Assessment Marks | | | | | | | | | | | 50 | | | | | | | End | Semest | ter Mar | ks | | | | | | 50 | 9 | | | | 200 | | | | manufacture and a second second second | | | | | | | | | | | | The state of the state of | se
omes: | 2. 5
1
3. 1 | Simulate
tools an
Fabricat | e the o
d can in
e the s | characte
ivestiga | eristics
te and i | of mic | rowave
et the re | compo
sults. | | using sc
roducts | | | | | The state of the state of | TELEVISION OF THE | 2. 5
3. 1 | Simulate
tools an
Fabricat
domain | e the o
d can in
e the s | characte
nvestiga
simulate | eristics
te and i
ed circu | of mic
interpre
uits to | rowave
et the re
provide | compo
sults.
sustai | onents
nable p | using so | | | | | Described. | TELEVISION OF THE | 2. 5
3. 1 | Simulate
tools an
Fabricat
domain | e the o
d can in
e the s | characte
nvestiga
simulate | eristics
te and i | of mic
interpre
uits to | rowave
et the re
provide | compo
sults.
sustai | onents
nable p | using so | in saic | | | | Outco | omes: | 2. S | Simulate
tools an
Fabricat
domain
Mappin | e the o | characte
nvestiga
simulate
urse ou | eristics
te and i
ed circu
tcomes | of micinterpre | rowave
et the re
provide
rogram | composults. sustain | nable p | using so | in said | | | | Cours
Outco | PO1 | 2. 5
3. 1
PO2 | Simulate
tools an
Fabricat
domain
Mappin | e the did can in the the set t | characte
nvestiga
simulate
urse ou
PO5 | eristics
te and i
ed circu
tcomes | of micinterpreduits to with property | rowave
et the re
provide
rogram | composults. sustain | nable p | roducts | in said | | | #### List of Experiments: - Design of quarter wave microstrip line on an appropriate substrate, resonated at 2.54 GHz and simulate using HFSS and plot its S₁₁ and VSWR performance. - 2. Fabrication of quarter wave microstrip line mentioned in experiment No. 1. - Design of microstrip line step transformer on an appropriate substrate at f_o = 2.54 GHz for impedance 50 ohms to 75 ohms, simulate using HFSS and plot its impedance plot for both ports over the span from 0.5 f_o to 1.5 f_o. - 4. Fabrication of microstrip line step transformer mentioned in experiment No. 3. - 5. Using HFSS, design and performance of equal split Wilkinson Power Divider for a 50 Ω system impedance at frequency $f_0 = 2.54$ GHz. Plot the return loss S_{11} , insertion loss $S_{21} = S_{31}$ and isolation $S_{23} = S_{32}$ verses frequency from 0.5 f_0 to 1.5 f_0 . - Fabrication of Wilkinson Power Divider mentioned in experiment No. 5. - Design of microstrip rectangular patch antenna resonated at f_o = 2.54 GHz. Simulated using HFSS and plot it S₁₁ parameter and 2D radiation pattern at theta 0 degree and phi 90 degree. - Fabrication of microstrip rectangular patch antenna mentioned in experiment No. 7. - 9. Design the microstrip line bends at 45° with matched ports at frequency 2.54 GHz. Simulate using HFSS and study the bending loss over the frequency from 0.5 f_{\circ} to 1.5 f_{\circ} . - Fabrication of microstrip line bends mentioned in experiment No. 9. - 11. Design the microstrip line curve bends with matched ports at frequency 2.54 GHz. Simulate using HFSS and study the bending loss over the frequency from 0.5 f_0 to 1.5 f_0 . - Fabrication of microstrip line curve bends mentioned in experiment No. 11. ### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | (C | Core | Elective
er Aideo | e Lab -2 | | | | | | | |----------------|---------------------------|----------------------|---|--|--|--|----------------------------|---|---------|----------|----------------------------|------------------|--| | | | | L | Credits | | ts | | | | | | | | | | 0 0 4 | | | | | | | | | | 2 | | | | | Internal Assessment Marks | | | | | | | | | | 50 | | | | | | End | Semes | ter Mar | ks | | | | | | 50 | | | | Cours
Outco | se
omes: | 1.
2.
3. 5 | Design a
Learn a
Python
Simulat
antenna | nd unde
progran
e and a
using s | erstand
erstand
nming.
nalyze
software | the bather the charter cha | sic of W
sic designance | gn proc
stics of | edure o | nt type: | e.
I networ
s of mic | rowave | | | | | _ | orocess | | 33 111114147 | | 194.19 41.41.9 | 100000000000000000000000000000000000000 | | | | L PULLUTATION DE | | | | 1 | | Mappin | g of co | urse ou | tcomes | with p | rogram | outcon | - | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1
0 | PO11 | PO12 | | | CO1 | M | M | M | M | S | S | S | N | M | N | N | W | | | CO2 | W | S | N | S | S | М | S | M | M | S | M | М | | | CO3 | M | M | S | N | S | S | M | M | M | S | M | S | | | CO4 | 4 M M S N S S M M M S M S | | | | | | | | | | | | | #### List of Experiments: - 1. To understand the basic concepts about the wireless sensor network (WSNs), types and application. - 2. To design and simulate a wireless sensor network (WSN) using NS3 simulator. - 3. To study and design WSN using LEACH, a cluster-based routing protocol for WSN. - 4. To understand and write a PYTHON
programme to wrap inputs of neural network with NumPy. - To understand and write a PYTHON programme to make the prediction in neural network. - 6. To understand and write a PYTHON programme to train a Neural Network. - 7. To understand and write a PYTHON programme to minimize the errors. - To study and understand the Digital signal Processing using MATLAB. - 9. To study and understand the Image Processing using MATLAB. - To design and simulate E-plane, H-plane, and Magic Tee for operation in X-band frequency range using HFSS software. - 11. To Design and simulate Horn Antenna for operation in X-band frequency range using HFSS. - To Design and simulate rectangular and circular patch microstrip antenna for 5G application using ADS/ HFSS software. - To Design and simulate wire monopole antenna for 5G application using ADS/ HFSS software. - To Design and simulate triple-frequency microstrip-fed monopole antenna using defected ground structure using ADS/ HFSS software. | | | | | | | PCEC-82
Semina | | | | | | | | |-------------------|---------|---------------|--|--|---|--|--|--|--|---|--|---|--| | | | | | L | | Т | | | Р | | Credi | ts | | | | | | | 0 | | 0 | | | 2 | | 1 | | | | Cours | e Objec | tives: | To carry out a presentation in one of the specializations of the program with substantial multidisciplinary component. | | | | | | | | | | | | Cours
Outco | | | rel
de
2. Tra
en
con
em | ated to
velopmed
ain the
gineerin
ntexts
aployers | to the ent and stude stude and to | work
commu
nts to
enges
set th | comp
inication
approa
with ed
nem fo | lleted
n skills.
ach eth
conomic
r futur | and in inically c, envir | ive oral
mproves
any mo
conment
uitment | s perso
ultidiscip
al and
by po | onality
olinary
social
tential | | | | | | 4. De pro
5. Ide sup | d time r
velop
ofession
entify a
oport,
derstan | nanager
audier
al objec
nd criti
and de
d the fa | ment stonce-cent
ctives ar
cally evalivery in
ctors in | rategies
tred (
nd integ
/aluate
n publi
fluencin | to their
presenta
rating e
the quic and
g a spea | r acader
ations
thical ar
ality of
profess
aker's c | mic stud
meetir
nd legal
f claims
sional d
redibility | ng co
visual ai
, explar
iscourse | ncrete
ids.
nation, | | | | PO1 | | 4. De
pro
5. Ide
sup
un | d time r
velop
ofession
entify a
pport,
derstan | nanager
audier
al object
nd criti
and de
d the fa
urse out | ment strace-cent
ctives ar
cally evalivery in
ctors in
comes | rategies
tred p
nd integ
valuate
n publi
fluencin
with pro | to their
presenta
rating e
the qu
ic and
ig a spea
pgram o | r acader
ations
thical ar
ality of
profess
aker's co | mic stud
meetir
nd legal
f claims
sional d
redibility | ies.
ng co
visual ai
, explar
iscourse | ncrete
ids.
nation,
e, and | | | CO1 | PO1 | PO2 | 4. De pro 5. Ide sup un Mappin | d time revelop of ession entify a poort, a derstan g of cou | nanager
audier
al object
nd criti
and de
d the fa
irse out
PO5 | ment strace-centrives ar cally explications in comes PO6 | rategies tred nd integ raluate n publi fluencin with pro | to their presents rating e the qu c and g a spec pgram o | r acader
ations
thical ar
ality of
profess
aker's co
utcome | mic stud
meetind legal
f claims
sional d
redibility
es
PO10 | ies. ng co visual ai , explar iscourse /- | ncrete
ids.
nation,
e, and | | | | N | PO2
N | 4. De pro 5. Ide sup un Mappin PO3 | d time revelop of ession entify a oport, sederstan g of cou | nanager
audier
al object
nd criti
and de
d the fa
rse out
PO5
N | ment strace-centrives ar cally evilutery increase comes of the o | rategies tred nd integ raluate n publi fluencin with pro N | to their presents rating er the qu ic and ig a spece pgram or PO8 | r acader
ations
thical ar
ality of
profess
aker's content
putcome
PO9 | mic stud
meetind legal
f claims
sional d
redibility
es
PO10 | ies. ng co visual ai , explar iscourse /. PO11 S | ncrete
ids.
nation,
e, and
PO12 | | | CO1
CO2
CO3 | N
N | PO2
N
N | 4. De pro 5. Ide sup un Mappin PO3 N | d time revelop of ession entify a poort, derstan g of couple PO4 S | nanager audier al object nd criti and de d the fa irse out PO5 N | ment strace-centrices ar cally explications in comes or PO6 N | rategies tred nd integ valuate n publi fluencin with pro PO7 N | to their presents rating e the qu c and g a spea pgram o PO8 S | r acader
ations
thical ar
ality of
profess
aker's co
utcome
PO9
M | mic stud meetir nd legal f claims sional d redibility es PO10 S | ies. ng co visual ai , explar iscourse /. PO11 S M | ncrete ids. nation, e, and PO12 S | | | | N | PO2
N | 4. De pro 5. Ide sup un Mappin PO3 | d time revelop of ession entify a oport, sederstan g of cou | nanager
audier
al object
nd criti
and de
d the fa
rse out
PO5
N | ment strace-centrives ar cally evilutery increase comes of the o | rategies tred nd integ raluate n publi fluencin with pro N | to their presents rating er the qu ic and ig a spece pgram or PO8 | r acader
ations
thical ar
ality of
profess
aker's content
putcome
PO9 | mic stud
meetind legal
f claims
sional d
redibility
es
PO10 | ies. ng co visual ai , explar iscourse /. PO11 S | ncrete
ids.
nation,
e, and
PO12 | | | | | | | | | EEG-91 | | 0100 | | | | | | |--------------------------|--------------------------------|----------------------------|--|---|---|--------------------------------|------------------------------|--------------------------------|---------------------------------|--|-------------------------------|---------------------------|--| | | | | lo l | 727 | Vireless | Sensor | | rks | _ | 1 | c !!: | | | | | | | | <u> </u> | | | T | - | P | - | Credits | 8 | | | | | | L | 3 | No. | | 0 | | 0 | | 3 | | | | | | | _ | al Marl | NAME OF TAXABLE PARTY. | | | | | | 50 | | | | | | | | | | ation M | | | | | 50 | | | | Cours | e Objec | tives: | This course is aimed to study the sate- of- the- art wireless sensor network architecture, routing protocols, performance metrics, challenges as well as the applications of wireless sensor networks. | | | | | | | | | | | | Cours | e Outco | omes: | net
2. Idei
net
3. Und | works.
ntify, ev
work.
derstand | aluate a | and ana | lyze the | proble | ms rela
ithms a | s of wi
ted to w
nd their
sues. | rireless : | sensor | | | | | | Mappin | g of cou | ırse out | comes | with pro | ogram o | utcom | es | | | | | | PO1 | PO2 | PO3 |
PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | | CO1 | S | N | N | M | N | M | N | M | N | N | N | N | | | CO2 | N | S | M | N | N | M | N | N | M | N | M | M | | | CO3 | S | M | M | S | M | M | M | N | N | N | М | N | | | CO4 | S | M | M | N | M | M | S | N | M | N | M | M | | | | | | - | Un | nit-l | | | 100 | | | | 10 hrs | | | hoc w
of ser
BT-no | rireless insor nod
des, Tel | networ
des, co
os-B. | cteristic
ks, single
mmercia | e node a
illy avai
<u>Un</u>
tocols: | archited
lable se
<u>it-II</u>
Fundam | tures –
ensor no
nentals | hardwa
odes – I
of MAC | mote, | ponents
IRIS, m
ols - loc | s, energy
ica mote
ation di | consur
e, EYES
scovery, | nption
nodes
16 hrs | | | issues | - low d | uty cyc | le and w | | STATE STATE OF | ts, IEEE | 802.15. | 4 MAC | orotoco | is, energ | у етпсте | -877700011 | | | | 360 060 00 0 PM | 0.00.00.00.00.00 | | | it-III | 7 | | 987 g385 (4 10 - 1410) | | San San Baran | | 10 hrs | | | netwo | orks, flo | oding | athering
and gos
sed routi | siping, | data ce | entric ro | outing, | gradien | t based | l routing | g, hiera | | | | | | | | Uni | it-IV | | | | | | | 12 hrs | | | auton
milita | nation,
ry ap | medic
plicatio | SN: WSI
al appli
ons, civ
bitat mo | cations,
/il and | , recon
d env | | e sens | | works, | | moni | | | | RECOMMENDED BOOKS | | | | | | | | | |--|---|---|--|--|--|--|--|--| | Title | Author | Publisher | | | | | | | | Wireless Sensor Networks Technology, Protocols and Applications | Kazem Sohraby, Daniel
Minoli and Taieb Znati | John Wiley & Sons, 2007 | | | | | | | | Protocols and Architectures for Wireless Sensor Networks | Holger Karl and
Andreas Willig | John Wiley & Sons Ltd,
2005 | | | | | | | | Wireless Sensor Networks: Heterogeneous Clustered Data Aggregation and Routing Protocols | D. Kumar, T.C Aseri,
and R.B. Patel | Lap Lambert Academic
Publishing GmbH & Co.,
Germany, 2012 | | | | | | | ### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | Netwo | | PEEC-91 urity and | Z-56 | graphy | | | | | |----------------|--------------------------|----------------|---------|--|----------------------|----------------------|--|--------------------|----------|---------|------|------| | | | | | L | | Т | | | Р | | Cred | lits | | | | | | 3 | | 0 | 9 | | 0 | 3 | 3 | 0 | | | | Sess | ional M | arks | | | | | | | 50 |) | | | | End | Semest | er Exam | ination | Marks | | | | | 50 |) | | Cours
Outco | STEEL STORY OF THE STORY | 2. Ur
3. Fa | ndersta | nd the b
e with th | asics of
ne conce | private
ept of n | key and
umber t | public l
heory. | key cryp | tograph | у. | | | | | | Mappin | The second secon | | A PROPERTY OF STREET | Contract of the th | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | CO1 | S | M | w | N | N | N | N | N | N | N | N | N | | CO2 | M | M | M | N | N | N | N | N | N | N | w | N | | CO3 | W | S | W | N | N | N | N | N | N | N | W | N | | CO4 | S | S | M | N | N | N | N | N | N | N | N | N | | | | | | | Unit | :-1 | | | | | 12 | hrs | **Security**: Need, security services, attacks, OSI security architecture, one-time passwords, model for network security, classical encryption techniques like substitution ciphers, transposition ciphers, cryptanalysis of classical encryption techniques. **System security**: Intruders, intrusion detection, password management, worms, viruses, trojans, virus countermeasures, firewalls, firewall design principles, trusted systems. Unit-II 10hrs **Number theory**: Introduction, Fermat's and Euler's theorem, the Chinese remainder theorem, Euclidean algorithm, extended Euclidean algorithm and modular arithmetic. Unit-III 14 hrs **Private-key (symmetric) cryptography**: Block ciphers, stream ciphers, RC4 stream cipher, data encryption standard (DES), advanced encryption standard (AES), triple DES, RC5, IDEA, linear and differential cryptanalysis. Public-key (asymmetric) cryptography: RSA, key distribution and management, Diffie-Hellman key exchange, elliptic curve cryptography, message authenticat ion code, hash functions, message digest algorithms: MD4 MD5, secure Hash algorithm, RIPEMD-160, HMAC Unit-IV 12 hrs **Authentication** - IP and web security digital signatures, digital signature standards, authentication protocols, Kerberos, IP security architecture, encapsulating security payload, key management, web security considerations, secure socket layer and transport layer security, secure electronic transaction. | RECO | MMENDED BOOKS | | |---|---|-------------------| | Title | Author Pu | ublisher | | Cryptography and Network Security,
Principles and Practices | William Stallings | Pearson Education | | Network Security, Private Communication in a Public World | Charlie Kaufman, Radia
Perlman and Mike Speciner | Prentice Hall | | 3. Security Architecture, Design
Deployment and Operations | Christopher M. King, Ertem
Osmanoglu, Curtis Dalton, | RSA Press | | 4. Inside Network Perimeter Security | Stephen Northcutt, Leny
Zeltser, Scott Winters, Karen
Kent, and Ronald W. Ritchey | Pearson Education | ### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | Ad | dvance | PEEC- | 100000000000000000000000000000000000000 | etwork | 5 | | | | |----------------|---------|-----|-----------------------------------
-------------------------------------|---------------------------------------|-------------------------------|---|----------------------|---------|----------------------|---|-----------| | | | | | L | | | Т | | Р | | Credi | ts | | | | | | 3 | | | 0 | | 0 | | 3 | | | | | S | ession | al Mark | s | 8 | | | | | of some new advance less networks, mobile ideas and insights tworks. ated to the layer advanced routing a networks (throughes PO10 PO11 PO12 N W N M M M | | | | | E | nd Sen | nester E | xamin | ation M | larks | | | | 50 | | | ОБЈЕС | ctives: | r | etwork
mporta | s, VPN
nt desig | netwoi
gn issue | rks, etc.
es assoc |) and t | o give t
tith con | he stud | dent idea
network | as and ir
s. | sights on | | Cours
Outco | omes: | 2 | com
L. Anal
cong
L. Eval | munica
yze an
gestion
uate | tion are
d imp
control
the p | chitectu
lement
algorit | ire.
some
hm.
ances | of the | e mos | t advan | ced rou | 53
 | | | | | Mappi | ng of co | ourse o | utcome | es with | progra | m outc | omes | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | | CO1 | M | N | W | N | М | W | N | N | N | N | W | N | | CO2 | M | S | М | N | N | M | M | N | M | N | M | М | | CO3 | N | N | N | S | M | N | M | N | N | N | M | N | | | | | | Un | it-l | | | | | | | 12 hrs | Introduction to computer networks: Reference models: OSI model, TCP/IP model, comparison of TCP/IP and OSI models, types of data transmission, error detection and correction, multiple access protocols. Unit-II 12 hrs **Network types and topologies:** LANs, WANs, others and hybrids, ethernet, token bus, token ring; star, ring, bus, other. network hardware: wiring, network interface cards, hubs, routers, switches, introduction to Novell NetWare, and ARPANET Unit-III 12hrs **Introduction to distributed systems:** Characteristics of distributed Systems, examples, resource sharing, system models, architectural fundamentals: basic concepts, client-server model, cooperation between client and servers, extension to the client server model: mobile agents, proxy servers. Unit-IV 12hrs **Networking and internetworking:** Network types, principles, IP delivery review, options and encapsulation. IPv4 Vs. IPv6, inter process communication: external data representation, client server communication, group communication. | | RECOM | MENDED BOOKS | | |----|---|------------------------|---| | | Title | Author | Publisher | | 1. | Computer Networks | Andrew S.
Tanenbaum | 2nd edition, PHI, 1988 | | 2. | Computer network and Distributed processing | James Martin | Prentice-Hall. | | 3. | Data Communications and
Networking | B.A. Forouzan | 4th edition, McGraw Hill
Education, 2006 | ### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | F | O
lectron | EEG91 | | gn | | | | | |-------|-----|--------------|---|---|---|--------------------|----------|-----------------------|--------|--|-----------------|-------| | | | | | L | iccion | Т | ict Desi | ī — | Р | | Credits | į | | | | | | 3 | | | 0 | | 0 | | 3 | | | | | Se | ssional | Marks | | | | 1 | | | 50 | | | | | En | d Seme | ster Exa | minatio | on Marl | cs | | | | 50 | | | Cours | | re
1
2 | quired f . Explai . Explai produ . Explai | or elect
in reliab
in the in
ict desig | ronic in
ility and
aportan
gn.
of conti | dustry.
I metho | ds of so | olving co
s and Er | mplex | ation a
problem
ics in ele
onsidera | s.
ectronics | | | | | | l. Explai | in the ty | pes of i | comes | with pro | ogram o | utcome | es | - DOSS | 200 | | 601 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | P08 | PO9 | PO10 | PO11 | PO12 | | CO1 | W | N | N | N | N | M | N | M | N | N | N | N | | CO2 | M | M | S | M | N | S | M | N | N | N | M | М | | CO3 | M | M | S | 5 | N | S | M | N | S | N | S | М | | CO4 | N | M | M | N | N | M | N | N | M | N | M | N | | | | | 17: | Un | <u>it-l</u> | | | | | | | 11hrs | System reliability concepts: Introduction to concepts of reliability, nature of reliability problems in electronics equipment, series configurations, parallel configuration, mixed configuration, methods of solving complex systems, mean time to failure (MTTF) and mean time between failure (MTB) of systems. maintainability, availability concepts, system downtime, mean time to repair (MTTR), fault tree analysis-concepts and procedures, rules for fault tree construction. Unit-II 12hrs **Ergonomics and aesthetics in electronics product design:** Overview of electronics product design, top-down and bottom-up approach, considering power supply design as an example, ergonomics and display w.r.t. ergonomics and aesthetics consideration Unit-III 12 hrs Control panel design and thermal consideration: Types of controls, design and organization of control panel, engineering consideration, layout of components, selection of materials, sheet metals and plastic, structural design and control cabinets fabrications, thermal management of electronics equipment, thermal design consideration, component level, board level, system level, fans and system operating characteristics, heat sink design. Unit-IV 10 hrs Packaging: Design consideration for inter-connections, types of inter-connections, wires, cables, connectors, treatment of vibration, grounding | RECOMN | RECOMMENDED BOOKS | | | | | | | | | | | |--|--|--|--|--|--|--|--|--|--|--|--| | Title | Author | Publisher | | | | | | | | | | | Materials and Processes in Manufacturing | Ernest Paul De
Garmo, J.T. Black,
Ronald A. Kohser | 12 th Edition ,John Wiley
& Sons. | | | | | | | | | | | 2. Advanced Thermal of Electronics Equipment | Raiph Remsburg | Springer, 2011 | | | | | | | | | | | 3. Product Design of Electronics Equipment | V.S. Bagad | 4 th Edition 2009,
Technical Publication | | | | | | | | | | ### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | | | | | | | EEC-91 | | -1 | | 1.31 | | | |-------|---------|------|--|---|--|---
--|---|--|---|--|-------------------------------------| | | | | | L | | | Т | | P | | Credits | 7 | | | | | | 3 | | | 0 | | 0 | | 3 | | | | | | Session | al Marl | ks | | | | | | 50 | | | | | | End Se | mester | Examin | ation M | arks | | | | 50 | | | Cours | e Outco | mes: | and so
network
block in
neuro in
through
1. Ana
2. Gai
mad
3. Wri
4. Ana
5. Und
der
6. Abl | live en
k, and
lypothe
fuzzy m
Suppo
lyze the
chine-ba
te gene
lyze var
derstand
ive deci | gineering its applications of Control Con | g problications Genetic & cont or mach to algorit to deve achine le rithm to ural net | lems; of the control and tines. The control and an | about to
about to
m. New
gain kn
d their
hetic al
system.
he opting
rchitecte
develo | and the comet focus owledge application mization ures. | to hand e featur nponents s to gair ge in man cions n and so n probler zzy expe | res of s and b insigh chine le upport m. | neural uilding t onto arning vector | | | | | Mappin | g of cou | ırse out | comes | with pro | ogram o | utcom | es | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | P08 | PO9 | PO10 | PO11 | PO12 | | CO1 | S | М | N | N | N | М | N | М | W | N | N | N | | CO2 | S | М | M | N | M | М | S | N | N | N | M | M | | CO3 | N | M | N | N | N | М | M | N | N | S | M | M | | CO4 | N | M | N | N | N | W | N | M | M | N | M | W | | CO5 | S | N | S | N | N | S | S | N | N | N | M | M | | CO6 | S | N | W | N | S | W | M | N | N | N | N | N | | | | | | <u>Ur</u> | nit-l | | | | | | | 12 hr | **Neural network fundamentals:** Basic concepts, human brain, artificial neuron model, neural network architectures-Rosenblatt's perceptron, ADALINE and MADALINE networks, neural network characteristics, learning methods, architecture taxonomy, back-propagation network (BPN), BPN architecture, perceptron model, single layer network, multilayer perceptron model, back-propagation learning, back-propagation algorithm, tuning parameters effect and parameter selection, application of ANN to channel equalization. Unit-II 12 hrs **Fuzzy logic fundamental:** Crisp sets, fuzzy sets, membership function, basic fuzzy set operations, fuzzy set properties, crisp relations, fuzzy relations, fuzzy Cartesian product, operation on fuzzy relations, fuzzy systems, crisp logic, predicate logic, fuzzy logic, fuzzy rule based system and defuzzification methods. ### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | Unit-III | 12 hrs | |----------|--------| | | | **Genetic algorithm fundamentals:** Basic concepts, biological background, working principle, encoding, fitness function, reproduction including roulette-wheel selection, Boltzmann selection, tournament selection, rank selection and steady state selection, design of rapid nickel cadmium battery charger and rule base generation from numerical data using GA. Unit-IV: 12 hrs **Genetic modeling:** Inheritance operators, cross-over-single site crossover, two-point crossover, multipoint crossover, uniform crossover, matrix crossover, crossover rate, inversion, deletion and duplication, mutation operator, generation cycle, convergence of genetic algorithms. | | RECO | OMMENDED BOOKS | | |----|--|--|-------------| | | Title | Author | Publisher | | 1. | Neural Networks, Fuzzy Logic and
Genetic Algorithms | S. Rajasekaran and G.A.
Vijayalakshmi Pai | PHI | | 2. | Artificial Neural Networks | B. Yegnarayana | PHI | | 3. | Introduction to Applied Fuzzy Electronics | Ahmad M. Ibrahim | PHI | | 4. | Fuzzy Logic with Engineering
Applications | J T Ross | McGraw-Hill | ### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) | Course
Objective | _ | Er
Th
in
pl
sig
op
sy
sy | nd Semone aim
stallation
anning
gnal protical fi
stem;
stems.
. To ur | L 3 I Marks ester Ex of this on of using d occessing ber and design | caminates course optical different and event and the band the band the | ion Ma
e is to
fiber
t photor
els. Furn
mitigation
valuation | train st
based
nic tech
ther, fo
on in n
n of m | cudents
commu
nologie
cuses o
nodern
odern | nication
s as we
on differ
optical
optical | thods of
ns syste
Il as adv
rent nor
fiber co
fiber co
ommunic
ities effe | ems; sy
vanced on
inearit
ommuni
ommuni
cation sy | is and
estems
optical
cies in
ication
cation
estem. | |---------------------|------|--|---|---
--|---|--|---|--|--|--|---| | Objective
Course | _ | Er
Th
in
pl
sig
op
sy
sy | nd Semone aim
stallation
anning
gnal protical fi
stem;
stems.
. To ur | I Marks ester Ex of this on of using decessing ber and design | caminates course optical different g mode different and event the band | e is to
fiber
t photor
els. Fur
mitigation
valuation
oasic con
various | rks train st based nic tech ther, fo on in r | cudents
commu
nologie
cuses o
nodern
odern | in met
inication
is as we
on differ
optical
optical | chods of
ns syste
Il as adv
rent nor
fiber co
fiber co | 3
50
50
analysiems; sy
vanced on
inearite
ommuni | is and
estems
optical
dies in
ication
cation
estem. | | Objective
Course | _ | Er
Th
in
pl
sig
op
sy
sy | nd Semone aim
stallation
anning
gnal protical fi
stem;
stems.
. To ur | of this on of using decessing design | caminates course optical different g mode different and evendent the band t | e is to
fiber
t photor
els. Fur
mitigation
valuation
oasic con
various | rks train st based nic tech ther, fo on in n n of m | cudents
commu
nologie
cuses o
nodern
odern | in met
inication
s as we
on differ
optical
optical | ns syste
II as adv
rent nor
fiber co
fiber co
ommunic | 50
50
analysems; sy
vanced onlinearit
ommuni | estems
optical
cies in
ication
cation
estem. | | Objective
Course | _ | The incomplete sign of systems of systems of the incomplete | ne aim
stallation
anning
gnal protical fi
stem;
stems.
. To ur | of this
on of
using d
ocessing
ber and
design
nderstar | optical
lifferent
g mode
d their
and ev
nd the b | e is to
fiber
t photor
els. Fur
mitigation
valuation
oasic con
various | train st
based
nic tech
ther, fo
on in n
n of m | commu
nologie
cuses o
nodern
odern | nication
s as we
on differ
optical
optical | ns syste
II as adv
rent nor
fiber co
fiber co
ommunic | analys
ems; sy
vanced on
inearit
ommuni
ommuni | estems
optical
cies in
ication
cation
estem. | | Objective
Course | _ | in
pl
sig
op
sy
sy | stallation
anning
gnal protical fi
stem;
stems.
. To ur | on of
using d
ocessing
ber and
design
nderstar
nderstar | optical different g mode d their and ev nd the b nd the | fiber t photor els. Furt mitigati valuation pasic con various | based
nic tech
ther, fo
on in n
n of m | commu
nologie
cuses o
nodern
odern | nication
s as we
on differ
optical
optical | ns syste
II as adv
rent nor
fiber co
fiber co
ommunic | ems; sy
vanced on
inearit
ommuni
ommuni
cation sy | estems
optical
cies in
ication
cation
estem. | | 7 | es: | 100 | . To u | ndersta | nd the | various | 000.50 | 335 | | | | | | | | 4 | . Abilit
. Abilit
comr
. Capa | ty to des
ty to
municat | sign hig
analyz
ion syst
use opt | h bit-rat
e, mo
ems.
ical con | del ar | nd imp | plement | cation sy
t advar
on tools | nced o | optical | | | | | /lappin | g of cou | ırse out | 1 | with pro | ogram o | utcome | 1 | | | | P | 01 I | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | TH. T. ST. | M | W | N | N | N | W | N | N | W | N | N | N | | | M | N | N | S | N | N | N | N | M | N | N | N | | 120.000 | W | M | M | N | N | S | N | N | N | N | M | M | | | M | S | S | N | M | S | M | N | N | N | W | М | | CO5 | N | N | M | S | M | M | M | N | N | N | N | N | Overview of optical fiber communication: Evolution of basic fiber optic communication system, benefits and disadvantages of fiber optics, transmission windows, transmission of light through optical fiber, numerical aperture (NA), optical fiber modes & configurations, types of fiber, wave propagation in step index & graded index fiber, MFD, propagation modes in step index fibers, attenuation in optical fibers, fiber optic loss calculations, bending loses, absorption, scattering, fiber dispersion, dispersion shifted fiber, D-flattened fiber, polarization, cut-off condition and V-parameter, connectors & splices. **Dispersion and nonlinearities:** Dispersion in single mode and multimode fibers, attenuation and dispersion limits in fibers, dispersion management, Kerr nonlinearity, self-phase modulation, cross phase modulation, FWM. ### 1.2.4 -ELECTRONICS AND COMMUNICATION ENGINEERING (PG-ECE) Unit-II 12 hrs **Optical sources:** Direct and indirect band gap materials, semiconductor light-emitting diodes and laser diodes, LED power & efficiency, double hetero-junction LED, planner & dome LED, surface-emitting LEDs, edge-emitting LEDs, super luminescent LED, characteristic of LED, modulation, laser diodes: basic concepts for emission of radiation, threshold condition for laser oscillation, quantum well laser, distributed feedback laser, laser characteristics. **Optical detectors:** Principles of photodiodes, PIN & avalanche photodiodes, photodetector noise, detector response time, avalanche multiplication noise, temperature effect on avalanche gain, receiver SNR and BER calculations. Unit-III 10 hrs **Optical amplifiers:** Semiconductor amplifiers, Eerbium-doped fiber amplifiers (EDFAs) and Raman amplifiers, analytical modeling of gain saturation, gain equalization, ASE noise, amplifier cascades. **Optical sensors:** Advantages, generic optical fiber sensor, fiber selection for sensor, wavelength modulated sensors - pH, humidity, temperature, carbon dioxide sensors, fiber Bragg grating based sensors - principle, strain, pressure sensors, chemical sensors. Unit-IV 10 hrs **Optical networks design:** Fiber optic system design considerations -power budget, bandwidth and rise time budgets, electrical and optical bandwidth etc. Advanced multiplexing strategies: Optical TDM, subscriber multiplexing (SCM), WDM and hybrid multiplexing methods, optical networking - optical network topologies, network architecture- SONET/TDH, optical burst switching, OADM, wavelength conversion, optical filters, MZI. | RECOM | MENDED BOOKS | | |--------------------------------------|----------------|-----------------------------------| | Title | Author | Publisher | | 1. Fiber-optic communication Systems | G. P. Aggarwal | 2nd Ed., J. Wiley & Sons,
1997 | | 2. Optic Communication Systems | Mynbaev | Pearson education, 2001 | | 3. Optical Fiber Communication | Gerd Keiser | 5th edition, McGraw Hill,
2013 | | 4. Optical Fiber Communication | J. Senior | PHI | | | | | | | | PCEC-9:
ertation | | | | | | | |-------|-------------------------|-----|--
--|---|---|---|--|--|--|--|---| | | | | | L | | Т | | 1 | Р | | Cred | its | | | | | | 0 | | 0 | | | 20 | | 10 | 9 | | Cours | se Objec
se
omes: | | propo
Engine
resear
are ex
1. Re
2. De
pla | sal writeering. See probe prob | ting, co
Student
olem, ar
to com
literatu
concep
ey perta | nductings and literal plete an ure as pertual fraction to the | g resear
re expe
ture sur
id prese
ertains t
meworl
neir diss | rch in I
cted to
rvey. By
ent their
co their
k, resea
ertation | the end
researce
dissertanch des
topic. | d of the s
ch propo
tion top
sign and | ommun
form
semeste
sals.
ic.
data a | ication
ulation
er, they
nalysis | | | | | | | | d capar
dware t | | | (A) (A) | nd apply | /ing cor | npute | | | | | Mappin | g of co | urse ou | tcomes | with pr | ogram (| outcom | es | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | CO1 | M | M | W | S | M | M | N | N | M | M | M | N | | CO2 | N | N | N | S | N | N | N | S | S | S | M | S | | CUZ | | | | | | | | | | | | | | | | | | | - | PCEC-92 | 21 | | | | | | | | |---------------------|----------|--------|---|---|---|---|---|---|--|---|---|-----------------------------------|--|--| | | | | | | Disser | tation (| Part-II) | Sec. | | | | | | | | | | | | L | | Т | | | P | | Credi | ts | | | | | | | | 0 | | 0 | | | 32 | | 16 | | | | | Cours | se Objec | tives: | in con
and/o
/ scien
The r
disser | sultatio
r analyt
ntific manext foo
next foo
tation v | n with ical studethods cus is continued to the | the sup
dy and a
and use
on prep
By the | ervisor.
analyzin
of sof
aring the | Studer
g result
tware t
he stud
the ser | nts will
s with
ools on
lents fo
nester, | on their
conduct
modern
their re
or their
they are | experii
mather
esearch
researc | nenta
natica
topic
h and | | | | Course
Outcomes: | | | complete and present their research dissertation. Apply/develop solutions or to do research in the areas of Electronics & Communication Engineering. Design and validate technological solutions to defined problems. Organize, analysis and interpret experimental results. Describe the significance of experimental outcomes in a well reasoned discussion. Communicate clearly and effectively for the practical application of their work. Defend the experimental approach, methods, and interpretation in an oral defence before the evaluation committee. | | | | | | | | | | | | | | 1 | - | | g of cou | _ | | | _ | | - | | | | | | 604 | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | PO7 | P08 | PO9 | PO10 | PO11 | PO12 | | | | CO1 | S | S | S | S | S | S | S | M | S | M | S | M | | | | CO2 | S | S | S | W | M | S | S | W | M | N | M | M | | | | CO3 | M | S | M | S | W | M | M | M | M | S | M | M | | | | CO4 | N | N | N | S | N | N | N | S | S | S | 5 | S | | | | CO5 | N | N | N | S | N | N | N | S | M | S | S | | | | | CO6 | N | N | N | S | N | N | N | S | M | S | S | S | | | | | | | | | | In | | ND-72
hip in I | 1
ndustry | , | | | | | |-------|--------|---
--|---|---|--|---|--|---|---|--|--|--|----------------------------------| | | | | | L | | | Т | | Р | | С | Credits | | | | | | 0 | | | | | | 0 | 40 | | 6 | | | | | Cours | ctives | sharp
famil
desig
long-
pract
that i
stude
1. Co
2. Im
3. Ga | pen the iarize on, and term of | e real and policy | time to rovide ytical to transfer, under work presentheore rategies alyze their | echnicols a
formiderstaking entwore
etical destinations
the scient work | cal /m ds on" and tee and the and the aviron k in w concep time r ientifi effecti | trainir
chniquemselve
e socia
ment o
ritten,
ots wit
manage
c infor | rial skilling experies. Is also also also also also also also als | s require
rience w
so focus
a brillian
omic, an
strial org
formal p
al-life in
multi-ta | ed at the vith the es on state of admiration or esentions in the end of e | e job and requisite of theorems and the order of orde | e simulat
to achiev
retical an
e conside
to make t
mats.
nment.
istrial set | ion
e a
d
rati on
he | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | CO1 | 3 | 2 |
3 | 3 | 3 | 3 | 3 | 2 | 2 | 3 | 1 | 3 | 3 | | | COL | 1121 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | - | 3 | 1 | 3 | _ | 1 | | | 3 | - | | | | 03793 | 237.5 | 2000 | 3 | 3 | (2.5g) | 9 | 3 | | | CO2 | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 2 | 1 | 3 | 1 | 3 | 3 | 1 |