UG Syllabus For **3rd Semester** Four Year Degree Program

(Provisional: subject to confirmation by the concerned department)

DEGREE PROGRAM IN COMPUTER SCIENCE AND ENGINEERING

Seme	ster-III						
S.No	Sub Code	Subject Name	L	Τ	Р	Hrs.	Credits
1	AM-511	Higher Engineering Mathematics	3	0	0	3	3
2	MC-511	Human Values and Professional Ethics	1	0	0	1	0
3	CS-511	Operating System	3	0	2	5	4
4	CS-512	Digital Circuit and Logic Design	3	0	2	5	4
5	CS-513	Data structures and Algorithms	3	0	4	7	5
6	CS-514	Database Management System	3	0	4	7	5
		Total	16	0	12	28	21

DEGREE PROGRAM IN CHEMICAL ENGINEERING

Seme	ster-III						
S.No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	AM-511	Higher Engineering Mathematics	3	0	0	3	3
2	CY-511	Industrial Chemistry	3	0	2	5	4
3	PH-511	Material Science	3	0	2	5	4
4	CH-511	Chemical Process Calculations	3	2	0	5	4
5	CH-512	Chemical Engineering Thermodynamics	3	2	2	7	5
6	CH-513	Chemical Technology-I	3	0	2	5	4
		Total	18	4	8	30	24

DEGREE PROGRAM IN ELECTRONICS AND COMMUNICATION ENGINEERING

Semes	ster-III						
S No	Sub Code	Subject Name	L	Τ	Р	Hrs.	Credits
1.	AM-511	Higher Engineering Mathematics	3	0	0	3	3
2.	MC-511	Human Values and Professional Ethics	1	0	0	1	0
3.	EC-511	Network Analysis & Synthesis	3	2	0	5	4
4.	EC-512	Analog Communication	3	2	2	7	5
5.	EC-513	Digital Electronics	3	2	2	7	5
6.	EC-514	Analog Electronics Circuits	3	2	2	7	5
		Total	16	8	6	30	22

DEGREE PROGRAM IN ELECTRICAL ENGINEERING

Semest	ter-III						
S.No	Sub Code	Subject Name	L	Τ	Р	Hrs.	Credits
1	AM-511	Higher Engineering Mathematics	3	0	0	3	3
2	MC-511	Human Values and Professional Ethics	1	0	0	1	0
3	EE-511	Network Analysis & Synthesis	3	2	2	7	5
4	EE-512	Electrical Machines(DC machines and Transformers)	3	2	2	7	5
5	EE-513	Electrical and Electronic Measurement and Instrumentation	4	0	0	4	4
6	EE-514	Transmission and Distriution of Electrical Power	3	2	0	5	4
7	EE-515	Simulation Lab	0	0	2	2	1
		Total	17	6	6	29	22

DEGREE PROGRAM INFOOD TECHNOLOGY

Semeste	er-III						
S.No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	AM-511	Higher Engineering Mathematics	3	0	0	3	3
2	CY-511	Industrial Chemistry	3	0	2	5	4
3	PH-511	Material Science	3	0	2	5	4
4	FT-511	Food Biochemistry and Nutrition	3	0	2	5	4
5	FT-512	Heat and Mass Transfer	3	0	2	5	4
6	FT-513	Unit Operations	3	0	2	5	4
		Total	18	0	10	28	23

DEGREE PROGRAM IN INSTRIUMENTATION AND CONTROL ENGINEERING

Semester-III								
S.No	Sub Code	Subject Name	L	Τ	Р	Hrs.	Credits	
1	AM-511	Higher Engineering Mathematics	3	0	0	3	3	
2	MC-511	Human Values and Professional Ethics	1	0	0	1	0	
3	IE-511	Digital Electronics	3	0	2	5	4	
4	IE-512	Linear Integrated Circuits	3	0	2	5	4	
5	IE-513	Signals and Systems	3	2	0	5	4	
6	IE-514	Electrical Machines	3	2	2	7	5	
7	IE-515	Circuit Theory	3	0	0	3	3	
		Total	19	4	6	29	23	

DEGREE PROGRAM IN MECHANICAL ENGINEERING (MANUFACTURING)

Semeste	er-III						
S.No	Sub Code	Subject Name	L	Τ	Р	Hrs.	Credits
1	AM-511	Higher Engineering Mathematics	3	0	0	3	3
2	CY-511	Industrial Chemistry	3	0	2	5	4
3	PH-511	Material Science	3	0	2	5	4
4	ME-511	Applied Thermodynamics	3	0	2	5	4
5	ME-512	Manufacturing Processes	3	0	2	5	4
6	ME-513	Fluid Mechanics	3	2	2	7	5
		Total	18	2	10	30	24

DEGREE PROGRAM IN MECHANICAL ENGINEERING (WELDING)

Semeste	er-III						
S.No	Sub Code	Subject Name	L	Τ	Р	Hrs.	Credits
1	AM-511	Higher Engineering Mathematics	3	0	0	3	3
2	CY-511	Industrial Chemistry	3	0	2	5	4
3	PH-511	Material Science	3	0	2	5	4
4	ME-511	Applied Thermodynamics	3	0	2	5	4
5	ME-512	Manufacturing Processes	3	0	2	5	4
6	ME-513	Fluid Mechanics	3	2	2	7	5
		Total	18	2	10	30	24

Title of the course

: Higher Engineering Mathematics

: 3 (Lecture 3; Tutorial 0; Practical 0)

Subject Code Weekly load

Credit

: AM - 511 : 3 Hrs.

LTP 3-0-0

Unit	Course outlines	Lecture(s)
Unit-1	Laplace transforms	
	Laplace transforms of elementary functions. Properties of Laplace	
	transform. Transform of derivatives and integrals. Evaluation of integrals	7
	by Laplace transforms. Inverse Laplace transforms. Convolution theorem.	
	Solution of ordinary differential equations. Unit step function and unit	
	impulse function. Engineering applications.	
	Fourier series	5
	Fourier series. Change of interval. Even and odd functions. Half-range	
	series.	
	Partial derivatives and expansions	
	Functions of two or more variables. Partial derivatives. Homogenous	
	functions. Euler's Theorem. Total derivative. Derivative of an implicit	9
	function. Tangent and normal to a surface. Change of variables.	
	Jacobians. Taylor's and Maclaurin's series expansions for a function of	
	two variables.	
Unit-2	Complex Functions	
	Limit of a complex function. Differentiation. Analyticity. Cauchy-	1
	Riemann equations. Harmonic functions. Conformal mapping. Some	
	special transformations- translation, inversion and rotation. Bilinear	
	transformation.	
	Multiple integral	0
	Double integral. Change of order of integration. Triple integral. Change	8
	functions	
	Vector Calculus	
	Differentiation of a variable vector Scalar and vector point functions	
	Vector operator - Del Gradient curl and divergence - their physical	9
	interpretation and applications. Directional derivative Line surface and	
	volume integrals. Theorems of Green (in plane). Gauss and Stoke	
	(without proof) - their verification and applications	
L	(malout proof) and refineation and applications.	Total-45

Recommended Books:

1. R.K. Jain & S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publishers.

2. G.B. Thomas & R.L. Finney, Calculus: Analytical Geometry, Addison Wesley.

- 3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley Eastern.
- 4. B.V. Ramana, Higher Engineering Mathematics, McGraw Hill.

Title of the course **Subject Code** Weekly load Credit

: Industrial Chemistry : CY-511

: 5

LTP 3-0-2

: 4(Lecture 3; Practical 1)

Unit	Course outlines	Lecture(s)
Unit-1	Water and its treatment	12
	Water and its Treatment: Introduction, Hardness and its determination, Degree	
	of Hardness, Treatment and Purification of water for domestic and Industrial	
	purposes- Sedimentation, Filtration, Sterilization, Break point chlorination,	
	Ozonization ,Water for Steam Making: Sludge and scale formation and Caustic	
	embrittlement. Methods of boiler water treatment Lime-Soda process (hot and	
	cold lime soda process), Permutit or Zeolite process, Deionization or	
	Demineralization, Desalination of Brackish Water. Numerical Problems	
	Corrosion	07
	Direct chemical corrosion and electrochemical corrosion and their Mechanism,	
	Types of corrosion, Concentration cell corrosion, atmospheric corrosion,	
	Passivity, Pitting corrosion, factors influencing corrosion, Polarization, over	
	potential and its significance, Factors affecting corrosion, protection from	
	corrosion by metallic coatings, electroplating, electroless plating and cathodic	
	protection, Chemical conversion coatings and organic coatings- Paints, enamels.	
	Phase Rule and Distribution law	07
	Definitions (phase, component, degree of freedom, phase equilibrium), gibbs	
	phase rule, One component System (water system, Carbon dioxide	
	system, sulphur system), Two component system(Pb-Ag System, KI-water	
	system, Sodium sulphate water system) ,Nernst distribution law, Applications of	
	distribution law: solvent extraction.	
	Polymers	07
	Polymerization, types of Polymerization reaction and mechanism of	
	polymerization, molecular weight determination-Viscometry, light scattering	
	methods. Study of some commercially important polymers (PVA, FLUON, PC,	
	Kevlar, ABS polymer, phenolic & amino resins, epoxy resins and	
	polyurethanes), Engineering applications of polymeric materials, Conductive	
	polymers.	
Unit-2	Spectroscopic Techniques for Analysis	12
	Introduction, interaction of EMR radiation and matter, atomic and molecular	
	spectroscopy, Absorption laws	
	Atomic absorption spectroscopy: Basic principles, instrumentation,	
	interferences, typical applications.	
	Atomic emission spectroscopy: Basic principle, instrumentation and	
	applications.	
	UV-VIS and IR Spectroscopy-Introduction, theory, instrumentation,	
	applications of UV & IR spectroscopy (including finger print region in IR)	

Total=45

Recommended Books:

- 1. P. C. Jain & M. Jain, Engineering Chemistry, Dhanpat Rai Publishing Company, New Delhi, 2005.
- 2. B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, Vishal Publishing Company, 2008.
- 3. F.W. Billmayer. Textbook of Polymer Science. 3rd Edn, Wiley. N.Y. 1991.
- 4. C. N. Banwell & E.M. McCash, Fundamentals of Molecular Spectroscopy, 4th Edn, Tata Mc Graw-Hill Edition, 1995.
- 5. S. S. Dara, S. S. Umare, A Text Book of Engineering Chemistry, S. Chand Publishing, 2011.

- 6. J. D. Lee, Concise Inorganic Chemistry, 5th Edn., Chapman and Hall, London, 1996.
- 7. Engineering Chemistry by B. Sivasankar, Tata Mcgraw Hill
- 8. Engineering Chemistry by A. Mallick, Viva Books, 2008.
- 9. Organic Chemistry by J. Clayden, Nick Greeves, S. Warren, Oxford Press 2012.
- 10. Levine, Physical Chemistry, 5/e (7th reprint), Tata McGraw Hill, 2006.
- 11. Inorganic Chemistry, Principle, structure and reactivity, J.E. Huheey, E.A. Keitler, R.L. Keita, O.K. Medhi, Pearson Education, 4th Ed.
- 12. Chemistry, J.E. Mcmerry and R.C. Fay, 5th Ed., Pearson Education, 2008

List of Experiments (CY-511/CY-521)

- 1.) Determination of Total Hardness of water (tap, lake, pond, river) using standard EDTA solution and Eriochrome Black Tea (EBT) indicator.
- 2.) Determination of Available Chlorine in treated and untreated water titrimetrically.
- 3.) Determination of Available Chlorine in Bleaching Powder titrimetrically
- 4.) Analysis of water samples by BOD and COD.
- 5.) Estimation of Iron in water.
- 6.) Investigation of rusting of iron in different condition of rusting of iron.
- 7.) Investigation of the effect of metal coupling on rusting of iron.
- 8.) Study of phase rule of one component system
- 9.) Study of phase rule of two component system
- 10.) To determine the partition coefficient or distribution coefficient of iodine between CCl_4 and H_2O
- 11.) Preparation of Nylon 66
- 12.) Preparation of Polymers (Polystyrene)
- 13.) Preparation of urea -formahaldehyde resin
- 14.) Preparation of phenol-formahaldehyde resin (Bakellite)
- 15.) To determine the molecular weight of a polymer (polystyrene) by using viscometric method.
- 16.) Identification of functional group by FT-IR spectroscopy
- 17.) Determination of concentration of an unknown sample of UV spectroscopy.
- 18.) To determine λ max (wavelength of maximum absorption) of a solution of KMnO4 using a spectrometer.

(Any twelve to be performed)

:Material Science : PH-511/PH-521/PH-611 : 5

: 4 (Lecture 3; Practical 1)

LTP 3-0-2

Unit	Course outlines	Lecture(s)
Unit-1	Elements of crystallography	08
	A brief Introduction to material science, Space lattices, Unit cell, primitive cell,	
	Bravais lattice, Atomic packing factor, Miller Indices, directions and planes in	
	crystal lattice (cubic and hexagonal only), distribution of atoms in lattice planes	
	(in cubic crystal only), Important structures (NaCl, CsCl, Diamond and ZnS),	
	structure determination; X-ray diffraction, Neutron and electron diffraction	
	Imperfections in crystals	05
	Point imperfections, Frenkel, and Schottky defects and their	
	equilibrium concentration determination, Color centres, types of color centres,	
	generation of color centres, Edge and screw dislocation, Burger vector, Surface	
	defects	
	Band theory of solids	06
	Free electron theory, Concept of energy bands, Bloch theorem, Electron in a	
	periodic field of crystal (The Kronig - Penny Model) distinction between metal,	
	semiconductor and insulator, effective mass of an electron, Hall effect.	
	Nano-materials	05
	Fundamentals of nonmaterial's and nanotechnology, nano particles, properties of	
	nonmaterial's, synthesis and characterisation, applications of nonmaterials.	
Unit-2	Dielectric materials	08
	Introduction of dielectric materials, Polarization, Different types of polarization,	
	Electronic, ionic, orientational and space charge polarization, polarizability,	
	Clausius-Mossotti relation, temperature and frequency dependence of	
	polarizability, dielectric breakdown, measurement of dielectric properties,	
	Dielectric constant, Dielectric loss, ferroelectric and piezoelectric materials,	
	examples of materials and their applications.	0.0
	Magnetic materials	08
	Terminology and classification of engineering materials, Type of magnetism	
	(dia, para, terro, terri and anti terromagnetisms), Theory of para, dia and	
	ferromagnetic materials, magnetic anisotropy and magnetrostriction, magnetic	
	Comains, nard and soft magnetic materials, territes and their applications	00
	Superconductivity	08
	affects of magnetic field. London's equations, mentation donth exactly hast	
	PCS theory (electron lattice electron interaction, Cooper pair, specific heat,	
	approximation and the second interaction, cooper-pair, configurations of	
	cuperconductors, applications of superconductors, applications of	
	puperconductivity.	Total—18

Recommended Books:

- 1. Raghvan :Materials Science
- 2. Srinivasan & Srivastava :Science of Engineering Materials
- 3. Callister JR Materials Science and Engg.: An Introduction
- 4. Askeland & Phule : The Science and Engineering of Materia

List of Experiments (PH-511/PH-521/PH-611)

- 1. To prepare a metallic sample and measure the grain size using the metallurgical microscope.
- 2. To study the creep nature in metallic wires at room temperature.

- 3. To find the mobility and carrier concentration in a semiconductor sample using Hall Effect experiment.
- 4. To study the B-H curves of different materials using B-H curve tracer.
- 5. To determine the Stefan's constant using Stefan's constant kit.
- 6. To find the resistivity of a given semiconductor material using four probe method.
- 7. To find the Curie temperature of the given ferrite material.
- 8. To find the Curie temperature of the given ferroelectric material.
- 9. To calculate the dielectric constant of the given dielectric material.
- 10. To find the capacitance and permittivity of the given material.

Title of the course Subject Code Weekly load Credit : Human values and professional ethics : MC-511/ MC-521 : 01 Hr Lecture : 0

LTP 1-0-0

Unit	Course Description	Lecture(s)
Unit 1	Values and Self Development Social values and individual attitudes, Work ethics, Indian vision of humanism, Moral and non moral valuation, Standards and principles, Value judgments. Importance of cultivation of values, Sense of duty, Devotion, Self reliance, Confidence, Concentration, Truthfulness, Cleanliness, Honesty, Humanity, Power of faith, National unity, Patriotism, Love for nature, Discipline.	04
	Personality and Behavior Development Soul and scientific attitude, God and scientific attitude, Positive thinking, Integrity and discipline, Punctuality, Love and kindness, Avoiding fault finding, Free from anger, Dignity of labor, Universal brotherhood and religious tolerance, True friendship, Happiness vs. suffering love for truth, Aware of self destructive habits, Association and cooperation, Doing best, Saving nature.	04
Unit 2	Character and Competence Science vs. God, Holy books vs. blind faith, Self management and good health, Science of reincarnation, Equality, Nonviolence, Humility, Role of women, All religions and same message, Mind your mind, Self control, Honesty, Studying effectively.	03
	Human Rights Jurisprudence of human rights nature and definition, Universal protection of human rights, Regional protection of human rights, National level protection of human rights, Human rights and vulnerable groups.	02
	Competence in professional ethics Ability to utilize the professional competence for augmenting universal human order, Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, Ability to identify and develop appropriate technologies and management patterns for above production systems. Case studies of typical holistic technologies, management models and production systems	03
L		Total=16

Recommended Books:

- 1. S.K.Chakraborty, Values and Ethics for Organizations Theory and Practice; Oxford University Press, New Delhi,2001.
- 2. S.K. Kapoor, Human rights under International Law and Indian Law; Prentice Hall of India, New Delhi, 2002.
- 3. D.D. Basu, Indian Constitution; Oxford University Press, New Delhi, 2002.
- 4. W.K. Frankena, Ethics; Prentice Hall of India, New Delhi, 1990.
- 5. R. R. Gaur, R. Sangal, G. P. Bagaria, A Foundation Course in Value Education. 2009,
- 6. M Govindrajran, S Natrajan, V.S. Senthil Kumar, Engineering Ethics(including
- 7. Values); Eastern Economy Edition, Prentice Hall of India Ltd.

Title of course Subject code Weekly load : APPLIED THERMODYNAMICS : ME-511

: 5

LTP- 302

Credit	: -4(Lecture-3, Practical-1)	
Unit	Course Description	Lectures(s)
Unit-1	Internal Combustion Engines Introduction to I.C. Engines and their classification, Engine components, Nomenclature, Comparison of S.I. & C.I. engine, Working principles of 2- stroke and 4-stroke engine, Comparison of 2-stroke and 4-stroke engine, Gas power cycle, Introduction of different cycles, Carnot cycle, Otto, Diesel cycle, Dual cycle, Analysis of Otto cycle, Diesel cycle & Dual cycles.	7
	Combustion in S.I. Engine Introduction, Combustion in S.I. engine, Flame front propagation, Factor influencing flame speed, pre-ignition, abnormal combustion, Phenomena of knock in S.I. engine, Effect of engine variables on knocking.	7
	Combustion in C.I. Engine Stages of Combustion in C.I. engine, Factors affecting delay period, Phenomena of knocking in C.I. engine, Comparison of knocking in S.I. & C.I. engine	6
	Steam Engines Parts of steam engine and their function, Working of steam engine, Indicator diagram (Theoretical & actual), Diagram factor, IHP, BHP, Mechanical efficiency, Compounding of steam engines.	4
	Steam Nozzles and Steam Turbines Introduction to nozzles & types, Equation of continuity, Steady flow energy equation, Momentum equation, Nozzle efficiency, Calculation of nozzle area in adiabatic and frictionless flow, Mass flow rate through nozzle. Steam Turbines: Rankine's cycle, Principle of operation of steam turbine, Types of steam turbines, Simple impulse turbine, Compounding of impulse turbine, impulse reaction turbine, Reaction turbine, Velocity diagram of impulse turbine, effect of blade friction on velocity diagram, Blade or diagram efficiency, gross stage efficiency.	
	Gas Turbines Simple open cycle gas turbine, Actual Brayton's cycle, Rate & work ratio, Open cycle gas turbine with regeneration, Open gas turbine cycle with reheat, Open gas turbine with inter cooler, Comparison between closed cycle gas turbine & open cycle gas turbine, advantages & disadvantages of gas turbine over steam turbine, application of gas turbine.	7
	Jet Propulsion Introduction to turbojet engine, Thrust power propulsive efficiency, Thermal efficiency relations, Advantages & disadvantages of jet propulsion over other system, Operation of rocket engine using solid, Liquid propellant.	4
	Compressors Types of compressors, Reciprocating, centrifugal, screw comp. etc., Work done in single & multi cylinder compressor, Inter-cooling, Principle of minimum work for multi compressor, Efficiency.	5

Total-48

Recommended Books

I.C. EngineMathur & SharmaThermodynamicsP.K.Nag

Dhanpat Rai & Sons TMH

Thermodynamics (Vol.	R.Yadav	СРН
I-III)		
Heat Engineering	V.P.Vasandhani	Khanna Pubilsher
Thermal Engineering	P.L.Ballaney	Khanna Pubilsher
Engineering	O.P.Single	TMH
Thermodynamics		

List of Experiments (ME-511)

1. Constructional details and working of 2-stroke petrol engine.

- 2 Constructional details and working of 4-stroke petrol engine.
- 3. Constructional details and working of 4-sytokr diesel engine.
- 4. To find the performance of a diesel engine (B.H.P, thermal efficiency, fuel consumption, air consumption.)
- 5. Make a heat balance sheet of 4-stroke single cylinder diesel engine.
- 6. Morse test on 4-stroke 4 cylinder petrol engine.
- 7. To Analyses the exhaust gases of a vehicle with the help of a exhaust gas analyses.
- 8. To find out the flash point and fire point of kerosene.
- 9. Constructional details and working of steam engine.
- 10. Constructional details and working of turbojet engine.

Title of	course : MANUFACTURING PROCESSES	
Subjec	Code : ME-512	•
Weekly	load : 05 LTP 3-0-	-2
Credit	: 04	
Unit	Course Description	Lecture(s
Unit 1	Cutting Tools	8
	Types of cutting tools, cutting tool materials and their properties, illustration	of
	different cutting tools, design and manufacturing of a single point cutting tool	, a
	twist drill and milling cutters.	
	Press Working	8
	Types of presses, press working operations; shearing, blanking, piercir	ng,
	coining, swaging, embossing and upsetting. Types of dies, punches. pun	ch
	holders & strip Layout	
	Metal Finishing and Coating	8
	Purpose of grinding, surface grinding, cylindrical grinding, centre-le	ess
	grinding, specifications of grinding wheel, super finishing, introduction	to
	Honing, Lapping Polishing, Buffing and super-finishing. Metal Spraying. Me	tal
	Coating; galvanizing, electro-plating and anodizing.	
Unit 2	Powder Metallurgy	6
	Principle. Methods of making powder from metal. Processes involve	ed;
	Compacting, Sintering and finishing operations. Advantages and Disadvantag	ges
	of powder metallurgy	
	Thread Manufacturing	8
	Introduction, types of threads, threads making techniques, thread cutting on	n a
	lathe, threads finishing.	
	Gears and Gear Manufacturing	10
	Gear nomenclature, types of gears and their applications, gear manufacturi	ng
	methods, gear cutting on a milling machine, gear hobbing, gear shaping a	nd
	gear finishing	

Title Manufacturing Science Production Engineering Science Metal cutting Theory Author(s) Malik & Ghosh Pandey & Singh A.Bhattacharya **Publisher** EWP Standard Publishers Central Book publishers

List of Experiments (ME-512)

- 1. Study of different types of single point cutting tools and different operations performed with these tools. Practice facing, knurling and
- 2. Study types of threads and threads cutting process using a lathe. Practice thread cutting operations on a lathe.
- 3. Study of a twist drill, counter boring tool, counter sinking tool, and a spot facer. Practice the application of these cutting tools.
- 4. Study of different types of milling cutters used and different operations performed using these tools.
- 5. Study the use of indexing head on a milling machine. Practice gear milling operations for the making of a spur gear.

Note: Two exercises have to be done on each above mentioned experiments.

Title of the course Subject Code	:Fluid Mechanics : ME-513		
Weekly load	: 7	LTP 3-2-2	
Credit	:5		

Unit	Course Description	Lecture(s)
Unit 1	Fundamental concepts	02
	Definition of fluid, distinction between solid and fluid, fluid properties:	
	viscosity, surface tension, capillarity, vapour pressure; types of fluid	
	Fluid statics	04
	Control volume, forces on fluid element, fundamental equation of fluid statics,	
	pressure and devices for its measurement, centre of pressure, buoyancy, centre	
	of buoyancy, metacentre, metacentric height, hydrostatic thrust on submerged	
	bodies	
	Kinematics of fluid	06
	Scalar and vector fields, flow field and methods of describing fluid motion,	
	classification of fluid flow, motion of fluid particle along a curved path,	
	velocity and acceleration of fluid particle, rate of discharge, continuity	
	equation in differential form in different co-ordinate systems, velocity	
	potential, rotation, circulation, vorticity, stream lines, path lines, streak lines,	
	stream function, flow net, conservation of momentum- equation of motion	
	and momentum theorem	
	Dynamics of fluid flow	04
	Fluid dynamics, control volume and control surface, energy and its different	
	form used in fluid mechanics, Euler's equation of motion, Bernoulli's	
	theorem, application of Bernoulli's theorem, Euler's equation along a	
	streamline, Application of Bernoulli's theorem.	
	Viscous incompressible flow	05
	General viscosity law, Navier -Stokes equations, exact solutions of Navier -	
	Stokes equations as applied in parallel flow in a straight channel, Couette flow	
	and Hagen Poiseuille flow, kinetic energy correction factor, momentum	
	correction factor, theory of hydrodynamic lubrication	

Unit 2	Dimensional Analysis and Model Similitude	06		
	Systems of dimensions, Dimensional homogeneity and its applications.			
	Dimensional analysis, Rayleigh's method, Buckingham's π -theorem, model			
	similitude, Dimensionless numbers and their significance, distorted model.			
	Boundary Layer Theory	04		
	Description of boundary layer, boundary layer parameters, Prandtl's boundary			
	layer equations, Blasius solution for laminar boundary layer flows. Von-			
	Karman momentum integral equation, Laminar boundary layer, laminar -			
	turbulent transition, turbulent boundary layer flow, boundary layer separation,			
	Prandtl's mixing length hypothesis, fully developed turbulent flow in a pipe			
	Flow through pipes	04		
	Concept of friction factor in a pipe flow, variation of friction factor, flow			
	potential and flow resistance, flow through pipes jointed together either in			
	series or in parallel or in combination of both of them, losses in pipe bends			
	and pipe fittings, flow through orifice			
	Flow with a free surface	05		
	Flow in open channels, flow over a weir and notch, flow in a closed circular			
	conduits only partly full, hydraulic jump			
	Compressible flow			
	Thermodynamic relations of perfect gases, speed of sound, pressure field due			
	to a moving source, basic equations for one dimensional flow, stagnation and			
	sonic properties, normal shocks			
		Total=48		

- 1. White, Fluid Mechanics, ,McGraw Hill
- 2. Munson, Fundamentals of Fluid Mechanics, John Wiley & Sons
- 3. Cenegal, Fluid Mechanics, McGraw Hill
- 4. Modi & Seth, Fluid Mechanics & Fluid Machines, Standard Publishers
- 5. D. S. Kumar, Fluid Mechanics & Fluid Machinery, Kataria & Sons
- 6. A.K Jain, Fluid Mechanics, Khanna Publishers
- 7. Om & Biswas, Fluid Mechanics & Fluid Machines, Tata McGraw-Hill.
- 8. J. Lal, Fluid Mechanics, Metropolitan.

List of Experiments (ME-513)

- 1. Determination of Viscosity of a Liquid by Redwood viscometer.
- 2. Verification of Bernoulli's Theorem.
- 3. To determine Coefficient of Discharge of Venturimeter.
- 4. To determine Coefficient of Discharge of orifice meter.
- 5. To determine Coefficient of Discharge of Weir.
- 6. Pressure measurement using Bourdons Tube Pressure Gauge.
- 7. To determine C_c, C_v, C_d for Vena-Contracta.
- 8. Computation of Reynolds Number for different types of flow.
- 9. Computation of losses in Pipe bends/Fittings/Geometrical changes.
- 10. To determine coefficient of friction in a pipe flow.

Title of the course Subject Code Weekly load Credit : Operating System : CS-511 : 3 : 4

Umu	Course outlines	Lecture(s)
Unit-1	Basic Concept of Operating System	06
	Evolution of operating system, Operating System classifications,	
	Fundamental of operating system functions, Multiprogramming,	
	Multiprocessing, Time-sharing systems and real time systems. Software	
l	layers & virtual machine.	
	Process Mangement	06
	Process Overview, process states, multiprogramming, levels of scheduler	
	and CPU scheduling algorithms, multiple-processor scheduling, Threads,	
	Process Scheduling objects and techniques.	
	Interprocess Communication	06
	Concurrent processes - The Critical Section & Mutual Exclusion problem -	
	Algorithms - Semaphores, Critical Region, Conditional Critical Region,	
	Monitors, Messages - Examples in Contemporary OS - Classical Process	
	Co-ordination Problems	
	Memory Management	06
	Memory Hierarchy, Static and Dynamic Memory Allocation, Overview of	
	Swapping, Multiple Partitions Contiguous and Non-Contiguous Memory	
	Allocation, Concepts of Paging, Segmentation.	
Unit-2	Virtual Memory	08
	Virtual Memory Concepts - Demand paging - Performance - Fragmentation	
	& Compaction. Page replacement and Allocation algorithms -Memory	
	Protection - System Calls – Linux/Windows Virtual Memory Techniques.	
	File Mangemen	08
	File concepts, Access methods, Directory structure, File protection, File	
	System structure, Allocation methods, Secondary storage management -	
	Disk structure, Disk scheduling, Disk management, Swap-space	
	management, Disk reliability.	
	Deadlock	08
	Introduction, Analysis of conditions, Prevention & avoidance, Detection &	
	recovery.	

Recommended Books:

- 1. Silberschatz A & Galvin, Operating System Concepts, John Wiley & Sons
- 2. W. Stallings, Operating Systems: Internals and Design Principles, Pearson Pub.
- 3. Andrew S Tanenbaum, Operating Systems Design and Implementation, PHI
- 4. Crawley, Operating Systems An Object oriented Approach, McGraw Hill

List of Experiments

- 1. WAP to implement following CPU scheduling algorithms:
 - FCFS, SJF, Priority,Round Robin
- 2. WAP to implement MVT and MFT.
- 3. WAP to implement Bankers algorithm for deadlock avoidance.
- 4. WAP to implement Bankers algorithm for deadlock prevention.
- 5. WAP to implement following page replacement algorithms:
 - FIFO, LRU
- 6. WAP to implement paging technique of memory management.

Title of the course Subject Code	: Digital Circuits and Logic Design : CS-512		
Weekly load Credit	: 5 : 4	LTP	3-0-2

Unit	Course outlines	Lecture(s)
Unit-1	Introduction to the concept of Digital Electronics, Number systems, binary number	07
	system, octal number system, hexadecimal number system, signed and unsigned	
	numbers, Arithmetic using Different Number Systems; Representation of Binary	
	Number in Sign-Magnitude, Sign 1's & 2's Complement Notation; Rules for	
	Addition and Subtraction with Complement.	
	BCD, EBCDIC, ASCII, Extended ASCII, Gray and other Codes.	05
	Simplification of Boolean Function using Boolean theorems; Canonical and	07
	Standard Forms(SOP and POS) for Boolean Functions; Objectives of the	
	Minimization Procedures; Karnaugh Map Method; Don't Care Conditions; Quine-	
	Mccluskey Tabulation Method; Concept of Prime Implicates. Realization of	
	Boolean Functions Using Only NAND and NOR Gates.	
	Half & Full Adder; Half & Full Subtractor; Parity Generator and Checker; Code	05
	Converters; Carry look ahead generator; Binary Multiplier; Majority Circuits,	
	Magnitude Comparator.	
Unit-2	Binary Parallel; BCD Adder; Encoder, Priority Encoder, Decoder; Multiplexer and	07
	De-multiplexer Circuits; Implementation of Boolean Functions Using Decoder and	
	Multiplexer; ALU; BCD to 7-Segment Decoder; Common Anode & Cathode 7-	
	Segment Displays; PLA and PAL	
	Basic Concepts of Sequential Circuits; Cross Coupled SR Flip-Flop Using NAND	07
	or NOR Gates; D-Type and Toggle Flip-Flops JK Flip-Flop & race Condition;	
	Clocked Flip-Flops; Truth Tables & Excitation Tables for Flip-Flops; Edge &	
	Level Triggering; Master Slave Configuration; Edge triggered D flip-flop;	
	Elimination of Switch Bounce Using Flip-Flops; Flip-Flops With Preset & Clear.	0.4
	Sequential circuit; state table and state diagram; Design procedure; Basic Concepts	06
	of Counters and Registers; Shift Left and Right Register; Registers With Parallel	
	Load; SIPO and PISO	0.4
	Up Down and Mod-N ripple counters; Design of Synchronous Counter Using State	04
	Diagrams and Table; BCD Counters; Modulo-N Counter; Up Down Counter; Ring	
	counter; Johnson Counter, Sequence Generators	

Total=48

Recommended Books:

- 1. Morris Mano: "Digital Logic and Computer Design", PHI.
- 2. Bartee Thomas: "Digital Computer Fundamentals", McGraw-Hill.
- 3. Richard Sandige: "Modern Digital Design", McGraw-Hill.
- 4. Taub and Schilling: "Digital Integrated Electronics", McGraw-Hill.
- 5. Fletcher W.I.: "Engineering Approach to Digital Design", PHI.
- 6. Malvino & Leech: "Digital Principles & Applications", TMH.
- 7. J. F. Wakerly: "Digital design: principles and practice package", Pearson Edu.

List of Experiments CS-512

- 1. Study of Logic gates- AND, OR, NOT, NAND, NOR, XOR.
- 2. To simplify the given expression and to realize it using Basic gates and Universal gates.
- 3. Design and realization of Half adder/Substractor using NAND gates.
- 4. Design and realization of Full adder using Logic gates.
- 5. Realization of R-S Flip-flop.

- 6. Realization of J-K Flip-flop.
- 7. To design and set up the following circuit
 - a. 4:1 Multiplexer (MUX) using only NAND gates.
 - b. 1:4 Demultiplexer(DE-MUX) using only NAND gates.

Title of the course Subject Code	: Data Structures and Algorithms : CS-513		
Weekly load Credit	: 3 : 5	LTP	3-0-4

Unit	Course outlines	Lecture(s)
Unit-1	Introduction Basic concepts and notations; Data structures and Data Structure operations; Mathematical Notation and Functions; Algorithmic complexity and time- space trade off.	04
	Recursion Recursion; types of recursion; Examples of recursion – the exponential power of a number, Fibonacci numbers, the greatest common divisor, Towers of Hanoi.	06
	Arrays Introduction; One-dimensional array – storage, Traversing, Insertion, Deletion, Searching; Multidimensional arrays – Two-dimensional arrays, General multidimensional arrays. String processing and Manipulation	07
	Linked List Introduction; Basic concepts of linked list – Memory representation, Building a linked list, Traversing, Insertion, Deletion, Searching; Double linked list; Merging two lists; Header linked list; Circular linked list.	07
Unit-2	Stacks & Queues Stack, Representation of stack, Implementation of stack; Polish Notation; Queues; Implementation of queues; Circular queues; Double ended queue; Priority Queues	06
	Trees Binary trees; Complete Binary trees; Extended binary tree; Representation of Binary tree; Insertion and deletion from the Binary Tree. Tree Traversals using in-order, pre-order and post-orders; Representation of Binary Tree; Application of Binary tree; search tree; Heap tree, Balanced Binary tree; B- trees.	08
	Graphs Basic concepts & definitions; Representation of Graph; Adjacency list; Adjacency Matrix, Path Matrix, Graph Traversal; Shortest Path Algorithms.	05
	Sorting & Searching Linear search; Binary search; Bubble sort; Insertion sort; Quick sort; Selection sort; Merge sort; Heap sort; Selection sort, Hashing Techniques.	05
		Total=48

- 1. Lipschutz, Schaum Series, Data Structures, TMH
- 2. A.M. Tanenbaum, Data Structures using C and C++, Pearson education.
- 3. Trembley Sorenson, Introduction to Data Structures with applications, TMH.
- 4. Harowitz & Sahni, Data Structures, Galgotia Publications

List of Experiments CS-513

- 1) WAP to generate Fibonacci Series using recursion.
- 2) Write a function that interchanges the first element with last element, second element with second last element and so on.
- 3) WAP to multiply two Matrices.
- 4) Write a Function that removes all duplicate elements from an Array.
- 5) WAP that insert an element in beginning of Linear Link List.
- 6) WAP that delete an element from the beginning of the Linear Link List.
- 7) WAP that delete an element from the end of the Linear Link List.
- 8) WAP that delete an element after a given element of the given Linear Link List.
- 9) WAP that reverse the element of the Linear Link List.
- 10) WAP that concatenate two Linear Linked List.
- 11) WAP to remove the Top element of Stack.
- 12) WAP to insert (or push) an element at the Top of Stack.
- 13) WAP to insert an element at the end of queue.
- 14) WAP to remove the first element of the queue.
- 15) WAP to illustrate the implementation of Binary Search Tree.
- 16) WAP to sort an array of integer in Ascending Order using Bubble Sort.
- 17) WAP to sort an array of integer in Ascending Order using Insertion Sort.
- 18) WAP to sort an array of integer in Ascending Order using Quick Sort.
- 19) WAP to search an element using Linear Search Method.
- 20) WAP to search an element using Binary Search Method.

Title of the course Subject Code	Database Management System : CS-514		
Weekly load Credit	: 3 : 5	LTP	3-0-4

Unit	Course outlines	Lecture(s)			
Unit-1	Introduction	04			
	Data, data processing requirement, desirable characteristics of an ideal data				
	processing system, traditional file based system, its drawback, concept of data				
	dependency, Def of database, database management system.				
	Database concept				
	3-schema architecture, database terminology, benefits of DBMS, Database				
	development process - conceptual data modeling, logical database design,				
	physical database design, database implementation, database maintenance.				
	Database Analysis	06			
	Conceptual data modeling using E-R data model -entities, attributes,				
	relationships, generalization, specialization, specifying constraints. 5 – 6 practical				
	problems based on E-R data model.				
	Database Design	08			
	Logical database design and relational data model: Introduction to relational				
	database theory: def of relation, relational model operators, relational model				
	integrity rules, Normalization- 1NF, 2NF, 3NF, 4NF, BCNF & practical				
	problems based on these forms. Denormalization				
Unit-2	Database Implementation	08			
	Introduction to SQL, DDL aspect of SQL, DML aspect of SQL – update, insert,				
	delete & various form of SELECT- simple, using special operators, aggregate				
	functions, group by clause, sub query, joins, co-related sub query, union clause.				

Introduction, Overview of optimization process, expression transformation, database statistics, A divide and conquer strategy. Transaction processing Transaction concept, transaction state, Implementation of atomicity and durability, concurrent execution, Serializability, recoverability, Implementation of isolation, transaction definition in SQL.	04
Transaction processingTransaction concept, transaction state, Implementation of atomicity and durability, concurrent execution, Serializability, recoverability, Implementation of isolation, transaction definition in SQL.	04
Transaction processing Transaction concept, transaction state, Implementation of atomicity and durability, concurrent execution, Serializability, recoverability, Implementation of isolation, transaction definition in SQL.	04
Transaction concept, transaction state, Implementation of atomicity and durability, concurrent execution, Serializability, recoverability, Implementation of isolation, transaction definition in SQL.	
durability, concurrent execution, Serializability, recoverability, Implementation of isolation, transaction definition in SQL.	
of isolation, transaction definition in SQL.	
of isolation, transaction definition in SQL.	
Overview of backup and recovery process	06
Failure classification. Storage structure, recovery and atomicity, log based	
recover shadow paging recovery with concurrent transaction huffer	
recover, shadow paging, recovery with concurrent transaction, burlet	
management, failure with loss of non-volatile storage, advance recovery	
techniques.	

- 1. A Silberschatz, H. F. Korth, and S Sudarshan, Database System Concepts, TMH.
- 2. McFadden, F.Hoffer, M. B Modern database management, Prescott.
- 3. C.J Date, An Introduction to Database Systems, Addison, Wesley.
- 4. Raghu Ramakrishnan and Gehrke, Database Management System, McGraw-Hill.
- 5. Margaret.H.Dunham, Data Mining. Introductory and advanced topics, Pearson.

List of Experiments(CS-514)

- 1. Introduction to various constraints such as Primary key, secondary key, Super key, etc.
- 2. To implement Data Definition Commands (create, drop).
- 3. To implement Data Manipulation Commands (insert, delete, update, select)
- 4. To implement Data Control Commands (Commit, revoke, rollback, connect, execute)
- 5. Create Table, SQL for Insertion, Deletion, Update and Retrieval using aggregating functions.
- 6. Write Programs in PL/SQL, Understanding the concept of Cursors.
- 7. Write Program for Join, Union & intersection etc.
- 8. Creating Views, Writing Assertions, and Triggers.
- 9. Creating Forms, Reports etc.
- 10. WAP in PL/SQL for adding two numbers.
- 11. WAP in PL/SQL for reversing the number. For example the number is 12345 and reverse number will be 54321)
- 12. WAP in PL/SQL to find the number is even or odd.
- 13. WAP in PL/SQL to count numbers from 1 to 100

Title of Subject	the course Code	: Chemical Process Calculations : CH-511		
Weekly	load	: 3	LTP	3-2-0
Credit		: 4		
Unit	Course outlines			Lecture(s)
Unit-1	Introduction and '	Fechniques of problem solving		02
	Concept about un	it operations and unit processes, Types	of probl	ems in
	chemical engineeri	ng, various steps in techniques of problem	n solving, l	barriers
	to problem solving	, comparison between problem solving hat	oits of nov	rice and
	an expert.			
	Basic Chemical	Calculations		05
	Units and convers	ion, Concentration calculations for solution	ns, Raoult	's Law
	for ideal solutions,	Ideal Gas Law, Equations of state for rea	l gases, D	alton's
	Law for gaseous m	ixtures.		
	Psychrometry			03
	Humidification of	perations, psychrometric chart for air	water s	system,
	psychrometric ope	rations calculations for air – water and	d other s	ystems,
	Humanly charts &	their uses.		1.4
	Material Balance	t material halance without chemical rea	actions on	d with
	chamical reactions	Recycle bypass and purge operations y	with and w	u with
	chemical reactions	Degree of freedom analysis Applicat	ions of m	villout
	balance to various	benical plant operations		laterial
Unit_2	Energy Ralance	shemical plant operations.		12
01111-2	Heat Canacity H	eat capacity of gases at constant press	ure and c	ronstant
	volume. Heat can	acity for gaseous mixtures, and specifi	c heat of	
	mixtures. Latent h	eats. Heat of formation. Heat of combust	tions and	heat of
	reaction. theoretica	I flame temperature and their calculations.	Energy b	alances
	over various basic	unit operations.	- 01	
	Applications of ma	aterial and energy balance		12
	Applications of m	aterial and energy balance to the evapora	tors, distil	llation,
	reactors and othe	r industrial processes (steady state op	perations).	Basic
	calculations using c	chemical flow sheet simulator	,	
				Total=48

- 1. Hougen & Watson, Chemical Process Principle, Asia Publishers
- 2. Bhat & Vora, Stoichiometry, Tata McGraw Hill
- 3. Himmelblau, Basic Principles and Calculations in Chemical Engg., Prentice Hall (I) Ltd.
- 4. Felder, Elementary Process Calculations, Wiley Eastern

Title o	the course : Chemical Engineering Thermodynamics	
Subjec	Code : CH-512	
Weekl	load : 3 LTP 3-2-2	
Credit	: 5	
Unit	Tourse outlines I	ecture(s)
Unit_1	ntroduction	03
Omt-1	ntroduction and scope of chemical engg thermodynamics concept of system and	05
	urroundings classification of thermodynamic processes concept of temperature	
	nd Zeroth law of thermodynamics, thermodynamic properties	
	aws of Thermodynamics	05
	General statement of first law of Thermodynamics first law of thermodynamics	05
	or cyclic process non-flow and flow process concept of enthalpy and	
	alculations Second law of thermodynamics · statement concept of entropy	
	Carnot's cycle and Carnot's engine third law of thermodynamics	
	Volumetric Properties of Fluids and Heat Effects	04
	P-V-T behaviour of pure fluids, ideal gas law, equations of state for real gases.	01
	ompressibility charts, heat effects accompanying chemical reactions	
	Thermodynamic properties of pure fluids	05
	lassification, work function, free energy, relationships among thermodynamic	
	properties · Maxwell's equations and their uses Clapevron equation Method of	
	acobian and thermodynamic properties. Fugacity. Activity. Departure functions.	
	Thermodynamic diagrams.	
	Properties of solutions	07
	Properties of homogeneous mixtures; partial molar properties, chemical potential	
	t its applications, Fugacity in solutions, Henry's law, excess properties & their	
	pplications, activity and Activity coefficients in solutions, Gibb's Duhem	
	quation, properties changes of mixing, heat effects of mixing process.	
Unit-2	Phase equilibria	08
	Criteria for Phase equilibria, Phase equilibria in single component and multi-	
	omponent systems, Phase rule for non-reacting systems, Duhem's theorem,	
	/apour liquid equilibria in ideal and non-ideal solutions at low and moderate	
	ressures, Azeotrope calculations, Consistency test for VLE data, VLE for high	
	ressure systems, Flash vaporization, Calculation of activity coefficients for	
	olutions. VLE for partially miscible and immiscible solutions.	
	Refrigeration and Liquifaction	04
	Review of various cycles of refrigeration & liquefaction cycles (single stage),	
	efrigeration and liquefaction cycles (multiple stage).	
	Chemical Reaction Equilibria	07
	Criteria for chemical reaction equilibria, calculation of equilibrium constant and	
	bibb's tree energy change, effects of various parameters on equilibium constant	
	nd equilibrium compositions, liquid phase and heterogeneous reaction equilibria,	
	hase rule for reacting system.	c -
	Applications of thermodynamics	05
	Applications of thermodynamics to various operations, thermodynamic analysis of	
	istillation, evaporation and condensation processes, minimum work of separation	
	nd thermodynamic efficiency of separation.	1 40
	Tota	1=48

- 1. Smith & Van Ness, Introduction to Chemical Engineering Thermodynamics, Tata McGraw Hill
- 2. Kyle, Chemical & Engineering Process Thermodynamics, Prentice Hall Ltd.
- 3. Narayanan, K.V., Chemical Engg. Thermodynamics, Prentice Hall Ltd.
- 4. Rao, YVC, Chemical Engineering Thermodynamics, University Press.

List of Experiments (CN512)

- 1. To verify Zeroth law of thermodynamics.
- 2. To verify First law of thermodynamics.
- 3. To study the use of a pH probe and determine acid equilibrium constant from pH measurement.
- 4. To determine the solubility and solubility product of a slightly soluble salt.
- 5. To determine the specific heat of copper metal.
- 6. To determine the specific heat of a liquid substance by using method of mixing.
- 7. Determining the value for the molar heat of fusion for water.
- 8. Calculation of the calorimeter constant and measurement of enthalpy of neutralization of a strong acid with a strong base.
- 9. To verify Boyle's law.
- 10. To verify Charle's law.
- 11. To study vapor compression cycle of refrigeration and find C.O.P of the cycle.
- 12. To find dry bulb & wet bulb temperature of ambient air.
- 13. Joule-Thomson experiment to find Joule Thomson Coefficient.
- 14. To find the vapor pressure of a liquid substance at a given temperature.
- 15. To develop VLE data for a binary solution.
- 16. To study the effect of temperature on equilibrium constant for a reversible reaction.

Title of Subject	the course	: Chemical Tec · CH-513	hnology - I	
Weekly	v load	· 3	LTP 3-0-2	
Credit	1000	: 5 · Д		
	I			L
Unit	Course outlines			Lecture(s)
Unit-1	Sulphuric acid			05
	Properties of sulphu	ric acid, Manufa	cturing with flow chart by DCDA process,	
	uses.			
	Hydrochloric acid			05
	Manufacturing proce	ess with flow cha	rt and its uses.	
	Phosphoric acid			05
	Details of manufactu	iring process with	n flow chart and its uses.	
	Chlor alkali indust	ries		09
	Manufacturing of s	oda ash with flo	w chart and uses. Working of Diaphragm,	
	Mercury and Membr	ane cells.		
Unit-2	Cement			06
	Portland cement pro	duction. (details of	of manufacturing process with flow chart)	
	Alumina			07
	Manufacturing proce	ess with flow cha	rt and uses.	
	Fertilizers			11
	Major components	of fertilizers and	l their significance, Triple superphosphate,	
	Wet process, Urea.	Ammonium nitr	ate (details of manufacturing process with	
	flow chart)			

Total=48

Recommended Books:

1. M. Gopala Rao, Marshall Sitting, Outlines of Chemical Technology, East West Press

2. George T. Austin, Shreves's Chemical Process Industries, McGraw Hill

List of Experiments (CH-513)

1. To find the NPK value of given fertilizer.

- 2. To find out the components of cement.
- 3. To find the saponification value of vegetable oil.
- 4. To find the iodine value of given oil.
- 5. To perform the Ultimate Analysis of a salt.
- 6. To perform the Proximate Analysis of a Coal.

Title of the course Subject Code	: Network Analysis & Synthesis : EC-511		
Weekly load Credit	: 5 : 4	LTP	3-2-0

Unit	Course outlines	Lecture(s)
Unit-1	Basic of Circuit Analysis	04
	Basic two terminal circuit elements, Linear time invariant passive elements	
	(resistor, capacitor and inductor), Ideal voltage and current source, Energy	
	concepts in two terminal element.	
	Network Theorems	10
	Introduction, Kirchoff's Law, Nodal and Mesh analysis, Super Position	
	Theorem, Reciprocity Theorem, Thevenin Theorem, Norton Theorem,	
	Millman's Theorem, Maximum Power Transfer Theorem, Substitution	
	Theorem, Compensation Theorem, Tellegne's Theorem (for both AC and DC	
	excitations).	
	Resonance	05
	Introduction, Series resonance, Parallel resonance,	
	Magnetically Coupled Circuits	05
	Concept of mutual inductance and coupling coefficient, magnetically coupled	
	circuits, magnetically coupled circuits, Simple series and parallel circuits, Dot	
	convention, Ideal Transformer.	
Unit-2	Two Port Networks	07
	Introduction to single and two port networks, Parameters of two port networks,	
	z, y, h and A, B, C, D parameters, Relationship among different parameters,	
	Series and parallel connections of two-port networks.	
	Network Functions	04
	Review of Laplace transform, Network functions for one-port networks and	
	two-port networks, Procedure for finding network functions for two-port	
	networks, Poles and zeros of network functions, Restrictions on locations of	
	poles and zeros in driving point functions and transfer functions.	
	Network Synthesis	06
	Positive real functions, Synthesis of dissipative networks, Foster and Cauer	
	form realization.	
	Attenuator And Filters	07
	Introduction, Concept of Neper and decibel ,Types of attenuators: t-type, pi-	
	type, L-type, ladder type, balanced type, Filter fundamentals, Pass and stop	
	band, Behavior of characteristic impedance, Constant K-low and high pass	
	filters.	
	Т	otal=48

- 1. D-Roy Choudhary, Networks and Systems; Wiley Eastern.
- 2. <u>Abhijit Chakrabarti</u>, Circuit Theory : Analysis and Synthesis; Dhanpat Rai Publications.
- 3. Umesh Sinha, Network Analysis; Satya Prakashan.
- 4. Van Valkenburg, Network and Analysis; PHI.

Title of	the course : Analog Communication	
Subject	Code : EC-512	
Weekly	load : 7 LTP 3-2-2	
Credit	:5]
Unit	Course outlines	Lecture(s)
Unit-1	Analog Modulation Techniques	05
	Introduction to modulation, Need of modulation, Theory of amplitude	
	modulation, Frequency spectrum of AM wave, AM power calculations, AM	
	modulation with a complex wave, Concepts of angle modulation, Theory of	
	frequency modulation, Mathematical analysis of FM, Spectra of FM signals,	
	Narrow band FM, Wide band FM, Phase modulation, Phase modulation	
	obtained from frequency modulation, Comparison of AM, FM and PM.	
	AM Transmission	06
	Basic principle of AM generation. Square law modulation. Low level and high	00
	level modulation. Grid modulated class-C amplifier circuit (Vander Biil	
	modulation) Plate modulated class-C amplifier circuit Suppressed carrier AM	
	generation (Balanced modulator) Diode ring modulator. Product modulator	
	FM Transmission	05
	FM generation methods. Generation of FM by direct method. Basic reactance	05
	modulator Varactor diode modulator Indirect generation of FM by	
	Armstrong method Erequency stabilized AEC transmitter system Pro	
	Amistrong method, riequency stabilized AFC transmitter system, rie-	
		0.6
	SSB Transmission	06
	Introduction, Advantages of SSB Transmission, Generation of SSB, Filter	
	method, Phase Shift Method, Hilbert Transform, Representing SSB Signals in	
	terms of Hilbert Transforms, SSB modulator Using a Hilbert Transform ,	
	Third Method, Forms of amplitude modulation, Pilot carrier system,	
	Independent Sideband system (ISB), Vestigial sideband system (VSB).	
Unit-2	AM Reception	06
	Tuned radio frequency (TRF) receiver, Superheterodyne receiver, AM	
	receiver characteristics. RF amplifier, Image frequency rejection, Choice of	
	intermediate frequency, Frequency conversion and mixer circuits, Tracking	
	and alignment, IF Amplifier, AM detector, practical diode detector with AGC,	
	Distortion in diode detectors, Double hetrodyne receiver, Coherent AM	
	detection, AM receiver using a phase locked loop (PLL).	
	FM Reception	05
	Introduction, Block diagram of FM receiver, Amplitude limiter, De-emphasis	
	circuit, Basic principle of FM detection, slope detector, Balanced stop	
	detector, Foster-Seely phase discriminator, Ratio detector, FM detector using	
	PLL, Zero crossing detector as a frequency demodulator, Stereo FM receiver.	
	SSB Reception	05
	SSB product demodulator, Balanced modulator as SSB demodulator, SSB	~-
	envelop detection receiver, Pilot carrier SSB receiver, SSB double hetrodyne	
	receiver, ISB receiver, Modern communication receiver.	
	Analog Pulse Modulation Techniques	05
	Introduction, Pulse Amplitude Modulation (PAM), Natural PAM, Flat-top	00

PAM, Sampling Theorem, Frequency Spectra for PAM, PAM Time Multiplexing, Pulse Time Modulation (PTM), Pulse Width Modulation (PWM), Pulse Position Modulation (PPM), Pulse Code Modulation, Generation and detection of PAM, PWM, PPM and PCM.	
Noise	05
Introduction, External noise, Internal noise, Resistor noise, Multiple resistor noise sources, Shot noise, Transit time noise, Noise in reactive circuits, Noise Temperature, Noise bandwidth, Effective input noise temperature, Noise figure, Noise figure calculations, Noise in analog modulated systems, SNR calculation for AM and FM.	

Total=48

Recommended Books:

- 1. Kennedy, G., Electronic Communication Systems, McGraw-Hill (2008) 4th ed.
- 2. Taub, H., Principles of Communication Systems, McGraw-Hill (2008) 3rd ed.
- 3. Haykin, S., Communication Systems, John Willey (2009) 4th ed.
- 4. Wayne Tomasi, Electronic Communication Systems, Pearson(2011), 5th ed.

List of Experiments :(EC-613)

Experiments based upon hardware using communication kits and simulation with the help of simulation packages.

Hardware

- 1. To measure the modulation index of AM signals using the sine wave method and trapezoidal method .
- 2. To setup the circuit of AM modulator using transistor.
- 3. To setup the circuit of envelop detector for AM demodulation.
- 4. To setup the DSB/ SC AM signal and its demodulation using product Detector Circuit.
- 5. To setup the generation and detection of FM signals.
- 6. To setup the sampling process and time division multiplexing.
- 7. To setup the pulse amplitude modulation and demodulation circuits.
- 8. To setup the pulse width modulation and demodulation circuits.
- 9. To setup the pulse code modulation and demodulation circuits.
- 10. To setup the voltages and waveforms of various stages of super-heterodyne receiver.

Software

- 1. To measure the modulation index of AM signals using the sine wave method and trapezoidal method on MULTISIM software.
- 2. To observe the frequency spectrum and measure the bandwidth of AM signal on MULTISIM software
- 3. To setup the circuit of AM modulator using transistor on MULTISIM software.
- 4. To setup the circuit of envelop detector for AM demodulation on MULTISIM software.
- 5. To setup the circuit of DSB/SC AM using product modulator on MULTISIM software.
- 6. To observe the frequency spectrum and measure the bandwidth of FM signal on MULTISIM software.
- 7. To setup the circuit of pulse amplitude modulation on MULTISIM software.
- 8. To setup the circuit of pulse width modulation on MULTISIM software.
- 9. To setup the circuit of pulse position modulation on MULTISIM software.
- 10. To implement the analog modulation circuits using MATLAB.

Title of the course Subject Code Weekly load Credit : Digital Electronics : EC-513 :7 : 5

LTP 3-2-2

Unit	Course outlines	Lecture(s)
Unit-1	.Number Systems And Boolean Algebra	08
	Review of Number systems, Radix conversion, Complements 9's &10's,	
	Subtraction using 1's & 2's complements, Binary codes, Error detecting and	
	Correcting codes, Theorems of Boolean algebra, Canonical forms, Logic gates.	
	Digital Logic Families	08
	Introduction to bipolar Logic families: RTL, DCTL, DTL, TTL, ECL, I 2 L	
	and MOS Logic families: NMOS, PMOS, CMOS, Details of TTL logic family	
	- Totem pole, open collector outputs, TTL subfamilies, Comparison of	
	different logic families.	
	Combinational Logic	08
	Representation of logic functions, Simplification using Karnaugh	
	map, Tabulation method, Implementation of combinational logic using standard	
	logic gates, Multiplexers and Demultiplexers, Encoders and Decoders, Code	
	Converters, Adders, Subtractors, Parity Checker and Magnitude Comparator.	
Unit-2	Sequential Logic Concepts And Components	08
	Flip flops - SR, JK, D and T flip flops – Level triggering and edge triggering,	
	Excitation tables - Counters - Asynchronous and synchronous type Modulo	
	counters, design with state equation state diagram, Shift registers, type of	
	registers, circuit diagrams, timing wave form and operations, Introduction to	
	finite state machines	
	D/A And A/D Converters	08
	Weighted resistor type D/A Converter, Binary ladder D/A converter, Steady	
	state accuracy test, D/A accuracy and resolution, Parallel A/D Converter,	
	counter type A/D converter, Successive approximation A/D converter, Single	
	and Dual slope A/D converter, A/D accuracy and resolution.	
	Semiconductor Memories:	08
	Memory organization, Classification, and characteristics of	
	memories, Sequential memories, ROMs, R/W memories, Content Addressable	
	memories, Charged-Coupled Device memory, PLA, PAL and Gate Array.	
	Magnetic core memories.	
	Т	otal=48

Recommended Books:

- 1. Malvino and Leach "Digital principles and Applications" Tata McGraw Hill.
- 2. Jain R P "Modern Digital Electronics", Tata McGraw-Hill, Third Edition, (2003)
- 3. Mano M Morris, "Digital Design" Pearson Education, Third Edition, (2002)
- 4. Flecther "An Engineering Approach to Digital Design", Prentice Hall of India, New Delhi.
- 5. Tocci Ronald J "Digital Systems-Principles and Applications" Prentice Hall of India, New Delhi.

List of experiments (EC-513)

- 1. Verification of the truth tables of TTL gates, e.g., 7400, 7402, 7404, 7408, 7432, 7486.
- 2. Verify the NAND and NOR gates as universal logic gates.
 - a) Verification of the truth table of the Multiplexer 74150.
 - b) Verification of the truth table of the De-Multiplexer 74154.
- 3. Design and verification of the truth tables of Half and Full adder circuits.
- 4. Design and verification of the truth tables of Half and Full subtractor circuits.
- 5. Design and test of an S-R flip-flop using NOR/NAND gates.

- a) Verify the truth table of a J-K flip-flop (7476)
- b) Verify the truth table of a D flip-flop (7474)
- 6. Operate the counters 7490, 7493 and 74194. Verify the frequency division at each stage and with a low frequency clock (say 1 Hz) display the count on LEDs.
- 7. Verify the truth table of decoder driver 7447/7448. Hence operate a 7 segment LED display through a counter using a low frequency clock.
- 8. Repeat the above with the BCD to Decimal decoder 7442 and an array of LEDs
- 9. Design and test D/A converter using R-2R Ladder Network
- 10. Design and test of A/D converter.

* Experimentation work to be supported by simulated results

Title of the course Subject Code	: Analog Electronics Circuits : EC-514		
Weekly load Credit	:7 :5	LTP	3-2-2

Unit	Course outlines	Lecture(s)
Unit-1	Introduction	06
	Transistor biasing, stability factors, thermal runaway, JFET, MOSFET	
	characteristics, principle of operation, FET as amplifier.	
	Hybrid parameters and multistage amplifiers	06
	h- parameters, h- parameter equivalent circuits, analysis of CE, CC and CB	
	configurations, BJT amplifiers, frequency response of R-C coupled amplifier,	
	cascaded amplifier, transformer and direct coupled amplifiers,	
	Transistor At High Frequencies	06
	Hybrid PI model and high frequency analysis of transistor amplifiers, gain-	
	bandwidth product, Miller's theorem, common source and common drain	
	amplifiers at high frequencies, frequency response, distortions and noise in	
	amplifiers.	
	Feedback Amplifiers	06
	Classification of amplifier, feedback concept, advantages and disadvantages of	
	negative feedback, current-series, current-shunt, voltage-series, voltage-shunt	
	feedback amplifier.	
Unit-2	Oscillators	05
	Criteria for oscillation, description of circuits and working of tuned oscillator,	
	Collpits, Hartley, R-C phase shift, L-C, crystal oscillators.	
	Power Amplifiers	07
	analysis of class-A and class-B power amplifiers, push-pull amplifier,	
	complementary symmetry push-pull amplifier, harmonic distortion, power	
	dissipation and heat sink, conversion efficiency.	_
	Tuned Amplifiers	06
	Tuned voltage and power amplifiers, classification, single ended power	
	amplifier, doubled tunned circuits.	
	Wave shaping circuits Multivibrators, astable, monostable, bistable	06
	multivibrators, Schmitt trigger, design of these circuits using transistors.	
	Total=4	48

Recommended Books:

- 1. Millman and Halkias, Integrated electronics-Analog and Digital circuits and Systems; Tata McGraw Hill.
- 2. J.B. Gupta, Electronics Devices and Circuits; Katson Publishers.
- 3. Millman and Taub, Pulse, Digital and Switching Waveforms; Tata McGraw Hill.

List of Experiments (EC-514)

- 1. To plot frequency response characteristics of a RC Single stage..
- 2. To determine the voltage gain of a two stage RC coupled amplifiers.
- 3. To plot frequency response characteristics of Transformer coupled amplifier.
- 4. To plot frequency response of a tuned voltage amplifier and to calculate its resonant frequency.
- 5. To find voltage gain of an emitter follower and find its operating point.
- 6. To verify the Wein Bridge Oscillator
- 7. To verify the Phase Shift Oscillator.
- 8. To verify the high frequency response of transistor.
- 9. To verify the diode as a biased and unbiased clipper.
- 10. To verify the Astable and Bistable Multivibrator using Transistors.
- 11. To observe the low frequency response of transistor.
- 12. To verify the inverting and non-inverting amplifier using feedback.
- 13. To verify the frequency response of audio amplifier.

*Compare the results of each aim of experiment with ORCAD spice simulation.

Title of the course	: Network Analysis and Synthesis		
Subject Code	: EE-511		
Weekly load	: 7	LTP-3 2 2	
Credit	: 5		

Unit	Course Outlines	Lectures
Unit-1	Circuits Concepts	12 Hrs
	Circuits Elements, Independent and dependent sources, signals and wave	
	forms; periodic and singularity voltages, step, ramp, impulse, Doublet. Loop	
	currents and loop equations, node voltage and node equations, Network	
	Theorems, Superposition, Thevenin's, Norton's, Maximum Power Transfer,	
	Reciprocity. Fourier transforms and series, Laplace transform, its properties	
	and applications, Concept of one port, two-port networks, characteristics and	
	parameters	
	Time and Frequency Domain Analysis	12 Hrs
	Representation of basic circuits in terms of generalised freq. & their response,	
	Laplace transform of shifted functions, transient & steady response, Time	
	domain behaviors from poles and zeros, Convolution Theorem.	
Unit-2	Filters Synthesis	12 Hrs
	Classification of filters, characteristics impedance and propagation constant of	
	pure reactive network, Ladder network, T section, IT section, terminating half	
	section. Pass bands and stop bands. Design of constant-K, m-derived filters.	
	Network Synthesis	12 Hrs
	Composite filters, Network functions, Impedance & Admittance function,	
	Transfer functions, Relationship between transfer and impulse response, poles	
	and zeros and restrictions, Network function for two terminal pair network,	
	Sinusoidal network in terms of poles & zeros. Real liability condition for	
	impedance synthesis of RL & RC circuits, Network synthesis techniques for	
	2-terminal network, Foster and Cauer forms	

1. Temes & LaPatra – Introduction to circuit Synthesis & Design, McGraw Hill.

2. V. Valkenberg – Modern Network Synthesis, PHI.

3. Weinberg – Network Analysis & Synthesis, McGraw Hill.

4. Peikari – Fundamentals of Network Analysis & Synthesis, Wiley.

5. V. Atre-- Network Theory and Filter design, TMH.

List of Experiments (EE-511)

1Verification of principle of superposition with dc and ac sources

2 Verification of Thevenin, Norton and Maximum power transfer theorems in ac circuits

3 Verification of Tellegin's theorem for two networks of the same topology

4 Determination of transient response of current in RL and RC circuits with step voltage input

5 Determination of transient response of current in RLC circuit with step voltage input for underdamp, critically damp and overdamp cases

6 Determination of frequency response of current in RLC circuit with sinusoidal ac input

7 Determination of z and h parameters (dc only) for a network and computation of Y and ABCD parameters

8 Determination of driving point and transfer functions of a two port ladder network and verify with theoretical values

9 Determination of image impedance and characteristic impedance of T and Π networks, using O.C. and S.C. tests

Write Demo for the following (in Ms-Power point)

10 Verification of parameter properties in inter-connected two port networks : series, parallel and cascade also study loading effect in cascade

11 Determination of frequency response of a Twin – T notch filter

Title of the course: Electrical Machine (DC Machines & Transformers)Subject Code: EE-512Weekly load: 7Credit: 5

Unit	Course Outlines	Lectures
Unit-1	Transformers	8
	Effect of saturation on exciting current and in-rush current phenomenon.	
	Parallel operation of single phase transformers.	
	Auto transformers	08
	Principle of operation, equivalent circuit and phasor diagrams, comparison with	
	two winding transformer.	
	Three-phase transformers	08
	Different types of winding connections, Voltage and current ratios, Parallel	
	operation of three phase transformers. Three winding transformer's equivalent	
	circuit, off-load and on-load tap changing transformer, Scott connections.	
	Testing of transformers.	
Unit-2	D.c. Generator	12
	Working principle, construction of DC Machines, Armature windings, single	
	and double layer winding diagrams, E.M.F. and torque equations, armature	
	reaction, effect of brush shift, compensating winding, commutation, causes of	
	bad commutation, methods of improving commutation, methods of excitation	
	of d.c. generators and their characteristics.	
	D.c. Motor	12
	Working principle characteristics, starting of shunt and series motor, starters,	
	speed control methods: field and armature control. Braking: plugging, dynamic	
	and regenerative braking, Testing: Swinburn's test, Hopkinson test, Field test.	
	Estimation of losses and efficiency.	

Recommended Books-

- 1. Bimbhra P.S., Electrical Machinery, Khanna Publishers
- 2. Fitzgerald A.E., Kingsley C. and Umans S.D., *Electric Machinery*, 6th Edition, McGraw Hill
- 3. Langsdorff E.H., *Principles of D.C. machines*, McGraw Hill
- 4. Nagrath I.J. and Kothari D.P., *Electrical Machines*, 4th Edition, Tata McGraw Hill,
- 5. Say M G, Alternating Current Machines, 5th edition, Sir Isaac Pitman & Sons Ltd.

List of Experiments (EE-512)

1.To Load test on a single phase transformer.

2. To perform Open circuit and short circuit tests on a single phase transformer and hence find equivalent circuit, voltage regulation and efficiency.

3. To find the efficiency and voltage regulation of single phase transformer under different loading conditions.

4. To perform parallel operation of two single phase transformers.

5. To study the various connections of three phase transformer.

6. To perform Scott connections on three phase transformer to get two phase supply.

7. To study the constructional details of direct current (DC) machine and to draw sketches of different components.

8. To measure armature and field resistance of direct current (DC) shunt generator and to obtain its open circuit characteristics.

9. To obtain load characteristics of direct current (DC) shunt/series /compound generator.

10. To draw speed-torque characteristics of direct current (DC) shunt/series /compound generator.11. To study direct current (DC) motor starters.

12. To perform Swinburne's test (no load test) to determine losses of direct current (DC) shunt motor

Title of the course :Electrical and Electronics Measurement and Instrumentation

Title of the course	: Electrical and Electronic Measurement and Instrumentation		
Subject Code	: EE-513		
Weekly load Credit	: 4 : 4	LTP-4 0 0	

Unit	Course Outlines			Lecture(s)
Unit-1	Introduction			10
	Elements of generalized measurement system, characteristics of instruments,			
	accuracy, precision, sensitivity, range	e span. Construction and wo	orking of CRT,	
	Block diagram of CRO, measurem	ent of voltage and frequer	icy with CRO,	
	basic CRU circuit, measurement of	i voltage, current, phase, i	requency, time	
	front panel controls		significance,	
	Basic Indicating Instruments			12
	Classification of analog, concept of c	leflecting, controlling and d	amping torque.	12
	control and damping system, constr	ruction and principle of m	oving iron and	
	moving coil instruments, constructio	n of ammeter and voltmeter	r and extension	
	of their range and Electro dynamor	neter instruments, Principle	es of operation	
	PMMC ohm meters and their types.			
	Measurement of Resistance			10
	Potentiometers: Basic principles, typ	pes of potentiometers, their	r functions and	
	applications, Classification of resist	ance, measurement of low	, medium and	
	nigh resistance, ammeter-voltmeter method, wheat-stone bridge, digital LCR			
Unit_2	Bridges	insulation tester.		10
CIIIt-2	Sources and Detectors. General equ	ation for bridge balance. N	leasurement of	10
	R,L,C,M, F etc by Wheatstone,Ke	lvin, Maxwell, Hay's, An	derson, Owen,	
	Heaviside, Campbell, schering, W	vien bridges. Bridge sens	sitivity. Errors,	
	Wagner Earthing Device.		_	
	Magnetic Measurements			10
	Flux meter, B-H Curve, Hystersis loc	p, Permeameters, AC Testi	ng of Magnetic	
	materials, Separation of iron losses,	iron loss measurement by	Wattmeter and	
	Bridge methods.			10
	Theory and construction of current a	and notential transformers	ratio and phase	10
	angle errors and their minimization	Characteristics of CTs &F	Ts. Testing of	
	CTS &PTS		15., 1050	
Recom	mended Books-			
Electric	al and electronic measurement and	AK Sawhney	DhanpatRai	and
instrum	entation		Co.	
Electric	al Measurement	JB Gupta	SK Kataria	

	in Oupm	SIX IXata
Electronic Measurement and Instrumentation	Dr.Rajendra Prasad	S.Chand

Title of the course Subject Code	: Transmission and Distribution (: EE-514	of Electrical Power
Weekly load Credit	: 5 : 4	LTP-3 2 0

Unit	Course Outlines	Lectures
Unit-1	Introduction	06
	Generation of Electric Power- Brief description of Thermal, hydro nuclear and	
	gas power plants & other non-conventional power plants.	
	Transmission and Distribution Systems- DC 2 –wire and 3 – wire systems, AC	
	single phase, three phase and 4-wire systems, comparison of copper	
	efficiency. Distribution Systems: primary and secondary distribution systems,	
	concentrated & uniformly distributed loads on distributors fed at one and both	
	ends, ring distribution, submains and tapered mains, voltage drop and power	
	loss calculations, voltage regulators	
	Overhead Transmission Lines	08
	Types of Conductors, Line parameters; calculation of inductance and	
	capacitance of single and double circuit transmission lines, three phase lines	
	with stranded and bundle conductors, Generalized ABCD constants and	
	equivalent circuits of short, medium & long lines. Line Performance:	
	regulation and efficiency of short, medium and long lines, Series and shunt	
	compensation, Introduction to FACTS	
	Overhead Line Insulators	06
	Type, string efficiency, voltage distribution in string of suspended insulators,	
	grading ring, preventive maintenance	
	Mechanical Design of Transmission Lines	08
	Different types of tower, sag-tension calculations, sag-template, string charts,	
	vibrations & damaging Corona-corona losses, radio & audio noise,	
	transmission line – communication line interference	
Unit-2	Tariffs & Load Curves	10
	Definition & different tariffs for domestic, commercial, industrial application,	
	Different Load and Load duration curves. Curves their significance	
	Introduction to EHV/HVDC transmission	10
	Brief description of both the systems with working & constructional details	

1. Grainger John, J. and Stevenson, Jr. W.D., "Power System Analysis", McGraw Hill, 1994.

2. Harder Edwin, I., "Fundamentals of Energy Production", John Wiley and Sons, 1982.

3. Deshpande, M.V., "Elements of Electric Power Station Design", A.H. Wheeler and Co. Allahabad, 1979.

4. Burke James, J., "Power Distribution Engineering; Fundamentals and Applications" Marcel Dekker 1996.

5. Wadhwa, C.L., "Electric Power Systems", Second Edition, Wiley Eastern Limited, 1985.

6. Nagrath, I.J. and Kothari, D.P., "Power System Engineering", Tata McGraw Hill, 1995.

Title of the course Subject Code	: Simulation Lab : EE-515	
Weekly load	: 2	LTP-002
Credit	: 1	

List of Experiments(EE-515)

- 1. To perform various arithmetic operations in Microsoft Excel and create various types of 2D plots.
- 2. To create arrays and matrices in MATLAB and perform various arithmetic operations.
- 3. To write a programme in MATLAB for getting the desired data (largest, smallest, a range etc) from a set.
- 4. To write a programme in MATLAB for creating various types of 2D plots (single and multiple) from a set of data.
- 5. To measure and plot the Instantaneous, RMS and average values of current/voltage, power, power factor, crest factor, frequency and various other waveform parameters while simulation of behaviour of basic circuit components supplied from a DC and an AC source in MATLAB.
- 6. To simulate the steady state and transient behaviour of circuits having a pure resistance or pure inductance or pure capacitance supplied from a DC and an AC source in MATLAB. Plot their source and load current and voltage waveforms and comment on it.
- 7. To simulate the steady state and transient behaviour of circuits having RL, RC and RLC series combinations fed from a DC and an AC source in MATLAB. Plot their source and load current and voltage waveforms and comment on it.
- 8. To simulate the steady state and transient behaviour of circuits having RL, RC and RLC parallel combinations fed from a DC and an AC source in MATLAB. Plot their source and load current and voltage waveforms and comment on it.
- 9. To simulate the steady state and transient behaviour of a diode bridge rectifier (single phase and three phase) in MATLAB for R and RL load. Plot their current/voltage waveforms at source, diodes and load and comment on it.
- 10. To simulate the steady state and transient behaviour of DC Motors (shunt, series and compound) in MATLAB. Plot various current/voltage waveforms and characteristics and comment on it.
- 11. To simulate the steady state and transient behaviour of Transformers (single phase/three phase) in MATLAB. Plot various current/voltage waveforms and comment on it.
- 12. To simulate the steady state and transient behaviour of a single phase center tapped transformer based diode rectifier in MATLAB for R and RL load. Plot their current/voltage waveforms at source, diodes and load and comment on it.
- 13. To simulate the speed control of DC Motors (shunt, series and compound) in MATLAB using variable AC source and diode bridge rectifier and by armature and field control methods. Plot various current/voltage waveforms and comment on it.
- 14. To model a multiphase transformer using single phase/three phase Transformers in MATLAB and simulate its steady state and transient behaviour. Plot various current/voltage waveforms and comment on it.
- 15. Introduction to Labview and examples.

Recommended Books:

Title		Author		Publisher
1.	Getting Started with MATLAB	Rudra Pratap		Oxford University Press
2.	Mastering MATLAB 7	Hanselman & Littlefield		Prentice Hall
3.	Electric Machinery	Fitzgerald, Kingslay and Umans	d	McGraw Hills

Title of the course: Food Biochemistry and NutritionSubject Code: FT-511Weekly load: 5Credit: 4

Unit	Detailed Contents	Lectures
Unit 1	Enzymes	10
	Enzymes classification, specificity of enzymes, co-enzymes, co-factors, enzyme	
	inhibitors and activators, Factors effecting enzyme activity, Enzyme kinetics,	
	Line weaver Burk plot, Allosteric enzymes.	
	Metabolism of carbohydrates and biological oxidation	11
	Digestion and absorption, glycolysis, gluconeogenesis, Feeder pathway of	
	glycolysis, disorders of carbohydrate metabolism Kreb's cycle, electron	
	transport chain and oxidative phosphorylation.	
Unit 2	Metabolism of lipids	7
	Digestion, absorption and function of lipid, β -oxidation of fatty acids, Pathway of	
	synthesis of fatty acids, Biosynthesis of triacylglycerol.	
	Metabolism of Proteins	7
	Importance of protein, digestion and absorption of proteins, nitrogen balance,	
	Biosynthesis of protein, general catabolism of amino acids, deamination,	
	Transamination, urea cycle, disorders of amino acid metabolism.	
	Food Nutrition	9
	Functions and energy values of foods, basal energy metabolism: BV, NPU,	
	BMR, PER calculations, dietary allowances and standards for different age	
	groups, nutritive value of Indian food, techniques for assessment of human	
	nutritional status. Causes and preventions of malnutrition.	

Recommen	ded	Books:
----------	-----	---------------

Total=44

Author	Title	Publisher
Lehninger, A.L.; Nelson, D. L. and Cox,	Principals of	CBS
M. M	Biochemistry	
Strayer. L.	Biochemistry	
Handler, P.: Smith E.I.; Stelten, D. W	Principals of	AVI
	Biochemistry	
Sunetra Roday	Food Science	
	& Nutrition	

List of Experiments (FT-511)

- 1. Estimation of total sugars by Dubois method in a given food sample
- **2.** Estimation of glucose
- **3.** Estimation of fructose
- 4. Estimation of enzymatic activity in a given food sample
- 5. Estimation of ascorbic acid in a given food sample
- **6.** Estimation of cholesterol content
- 7. Estimation of protein by Lowry method
- 8. Estimation of phytic acid
- 9. Estimation of phosphatase activity in a milk sample
- **10.** Estimation of products of anaerobic fermentation
- **11.** Estimation of nutritive value of given food sample
- 12. Estimation of calorific value by Bomb calorimeter

Title of the course: Heat and Mass TransferSubject Code: FT-512Weekly load: 5Credit: 4

Unit	Detailed Contents	Lectures
Unit 1	Conduction heat transfer	12
	Modes of heat transfer, Steady state unidirectional heat transfer with and	
	geometries: insulation and its purposes critical thickness of insulation for	
	cylinders and spheres. Unsteady state heat transfer in simple geometry: Use of	
	Heisler charts, Gaussian error function to solve transient heat transfer problems.	
	Convection Heat Transfer	5
	Natural and forced convection, dimensional analysis for free and forced convection, dimensionless numbers used in convective heat transfer, important correlations for free and forced convection.	
	Boiling and condensation	5
	Boiling phenomenon, hysteresis in boiling curve, nucleate and forced convection boiling; condensation phenomenon, condensation on vertical surface, outside a tube and inside horizontal tube.	
Unit 2	Radiation heat transfer	5
	Characteristics of black, grey and real bodies in relation to thermal radiation, Stefan Boltzmann law; Kirchhoff's law; Wein displacement law, Emissive power for a black body and real body, intensity of radiation, radiation between two bodies	
	Heat Exchanger	5
	Classification, overall heat transfer coefficient, fouling factors, log-mean temperature difference for parallel and counter flow heat exchangers, effectiveness of parallel and counter flow heat exchanger by NTU method, Design of shell and tube heat exchanger	
	Mass Transfer	12
	Introduction to mass transfer, different modes of mass transfer, Mass flux and molar flux for a binary system, Fick's law of diffusion of mass transfer, Derivation of general diffusion mass transfer equation, Molecular diffusion in gases liquids and solids having steady state equi-molar counter diffusion and	
	through non diffusing body; Steady state equimolar counter diffusion, convective mass transfer coefficient natural and forced convective mass	
	transfer, dimensional analysis for free and forced convective mass transfer.	
	important correlations of convective mass transfer; permeability of films and laminates. Unsteady state diffusion in slabs, cylinders and spheres, transient	
	mass transfer in semi infinite medium.	

Recommended books:

Author		Title	Publisher
1.	Arora & D'kundwar	A course in Heat and Mass	Dhanpat Rai & Sons
		Transfer	
2.	R.C. Sachdeva	Fundamentals of Engineering	New Age
		Heat & Mass transfer	
3.	D.S. Kumar	Heat and Mass Transfer	Kataria & Sons
4.	R K Rajput	Heat and Mass Transfer	
5.	K A Gavhane	Unit Operations-II	Khanna Pub
		_	

Total=44

List of Experiments (FT-512)

- 1. To determine thermal conductivity of a material.
- 2. To find the thermal diffusivity of a food material.
- 3. To find out the Overall heat transfer co-efficient for a viscous food material assuming negligible internal thermal resistance (lumped heat capacity system).
- 4. To calculate the surface and centre temperature of a rectangular body loosing heat to the surrounding by use of Heisler and correction factor chart.
- 5. To calculate the surface and centre temperature of a cylindrical body loosing heat to the surrounding by use of Heisler and correction factor chart.
- 6. To calculate the surface and centre temperature of a spherical body loosing heat to the surrounding by use of Heisler and correction factor chart.
- 7. To determine surface heat transfer coefficient for a vertical tube losing heat by free convection.
- 8. To determine surface heat transfer coefficient for pipe losing heat by forced convection.
- 9. Determination of overall heat transfer coefficients for unsteady state heating process
- 10. To determine the value of Stefan Boltzmann constant for radiation heat transfer.
- 11. To determine LMTD, rate of heat transfer and effectiveness by NTU method for parallel flow heat exchanger.
- 12. To determine LMTD, rate of heat transfer and effectiveness by NTU method for counter current flow heat exchanger.
- 13. To determine the moisture diffusivity and activation energy for different geometries of food materials having rectangular/cubical geometry.
- 14. To determine the moisture diffusivity and activation energy for different geometries of food materials having cylindrical geometry.
- 15. To determine the moisture diffusivity and activation energy for different geometries of food materials having spherical geometry.
- 16. To study the behavior of boiling curve.

Title of the course	: Unit Operations	
Subject Code	: FT-513	
Weekly load	: 5	
Credit	: 4 (Lecture 3; Practical	2)

LTP 3-0-2

Unit	Detailed Contents	Lectures
Unit 1	Introduction	1
	Definition and application in food processing.	
	Size reduction	8
	Theory of communition, Ritinger's law, Kick's law, Bond's law and their	
	applications in calculation of energy required in grinding, Crushing	
	efficiency, Size reduction equipment used in food industry.	
	Sieving	5
	Separation based on size, Effectiveness of screens, Types of screens, Factors	
	affecting the sieving process, Fineness modules and particle size distribution	
	Mixing	6
	Theoretical aspects of solid mixing. Mixing index, rate of mixing, Theory of	
	liquid mixing, Equipment for liquid and solid mixing.	
Unit 2	Leaching and extraction	8
	Concentration, Gas – Liquid equilibria, Solid – Liquid equilibria, Extraction-	
	Solid Liquid extraction, Liquid-Liquid extraction, stage equilibrium extraction.	
	Super critical fluid extraction, Application-extraction of fatty acid, Essential oils.	
	Distillation	8
	Liquid vapor equilibrium, distillation of binary mixtures, simple distillation,	
	flash distillation, steam distillation. Crystallization-rate of crystallization,	
	crystallization equilibrium.	
	Filtration	8
	Theoretical aspects, Fundamental equation for filtration, Filtration	
	equipment.	
	Sedimentation and centrifugal separation	6
	Theory, Gravitational sedimentation of particles in liquids and gases,	
	Sedimentation equipment. Basic equation, centrifugal clarification,	
	Equipments.	

Recommended books:

Total=50

1. P. Fellows

Food Processing Technology

Woodhead Pub

2. R. L. Earle

Unit Operations in Food Processing

List of Experiments (FT-513)

- 1. Study of various equipments in Unit Operation Lab
- 2. Determination of critical speed of ball mill
- 3. Determination of power requirement of a given grinding equipment
- 4. Determination of the effect of hammer mill speed and screen size on particle size of the ground material
- 5. Determination of effectiveness of screen
- 6. Determination of fineness modulus of a ground sample
- 7. Effect of mixing time on the mixing index of solid mixing
- 8. Calculation of power requirement of a mixer
- 9. Dismantling and Assembly of horizontal filter press
- 10. Constructional features of rotary drum vacuum filter
- 11. Determination of factitious thickness of filter medium
- 12. Dismantling and Assembly of disc bowl centrifuge
- 13. Effect of speed of centrifuge on the composition and yield of cream
- 14. Determination of sedimentation rate of a slurry

Title of the course Subject Code	: Digital Electronics : IE-511	
Weekly load Credit	: 5 : 4	LTP-3 0 2

Unit	Course Outlines	Lecture(s)
Unit-1	Number System & Codes	08
	Review of number systems, binary number systems, octal number system,	
	hexadecimal number system, signed & unsigned numbers, different types of	
	codes & their conversions, binary operations- addition, subtraction,	
	multiplication, division, 1's & 2's complement of a number.	
	Combinational Logic	08
	Concept of positive & negative logic, introduction to Boolean variables, Logical	
	functions using Karnaugh map & Quine-Macluskey methods, multiplexers,	
	demultiplexers, encoders, decoders, address, subtractors, parity generators,	
	parity checkers, code converter.	
	Sequential Logic Concepts And Components	10
	Flip flops - SR, JK, D and T flip flops - Level	
	triggering and edge triggering, Shift registers, type of registers, circuit diagrams,	
	synchronous & asynchronous Counters, Excitation tables ,design with state	
	equation state diagram counters, up & down counters, ring counters & mod,	
	Counters. Introduction to finite state machines.	
Unit-2	Introduction to Vhdl	08
	Overview of digital design with very-high-speed integrated circuits (VHSIC)	
	hardware description language (VHDL), HDL format and Syntax, entity, Data	
	representation in VHDL, Truth table using VHDL, Decision Control structure	
	and Sequential Circuit using VHDL.	
	Digital Logic Families	08
	Introduction, characteristics of digital ICs, resistor transistor logic, integrated	
	injection logic, direct coupled transistor 109lc, diode transistor logic &	
	transistor-transistor logic, emitter coupled logic, MOS logic, and high threshold	
	logic families.	
	Semiconductor Memories	08
	Introduction, memory organization, classification & characteristics of memories,	
	sequential memories, read only memories, read & write memories, content	
	addressable memories, and programmable logic arrays, charged coupled device	
	memory.	

1. Digital Electronics	R. P. Jain	TMH
2.Digital Circuits and Logic Design	Katre	Techmax
3.Digital Electronics & 4.Computer	Albert Paul Malvino	TMH
Fundamentals		
5.Digital Computer Design	Radhakrishanan &	PHI
	Rajaraman	
6.Digital Computer Fundamentals	Thomas Bartee	TMH
7.Digital Computer Design	Moris Mano	PHI

List of Experiments (IE-511)

1. Verification of the truth tables of TTL gates.

2. Verify the NAND and NOR gates as universal logic gates.

3. Design and verification of the truth tables of Half and Full adder circuits.

4. Design and verification of the truth tables of Half and Full subtractor circuits.

5. Verification of the truth table of the Multiplexer 74150.

- 6. Verification of the truth table of the De-Multiplexer 74154.
- 7. Design and test of an S-R flip-flop using NOR/NAND gates.
- 8. Verify the truth table of a J-K flip-flop (7476)
- 9. Verify the truth table of a D flip-flop (7474)
- 10.Operate the counters 7490, 7493.
- 11. Design of 4 bit shift register(shift right).
- 12.Design of modulo-4 counter using J K flip flop.

Title of the course Subject Code	: Linear Integrated Circuits : IE-512	
Weekly load Credit	: 5 : 4	LTP-3 0 2

Unit	Course Outlines	Lecture(s)
Unit-1	Introduction	08
	The Operational Amplifier, block diagram representation and analysis, Differential amplifier, buffer, level translator and output driver. Block diagram, specifications, ideal op-amp, emitter coupled differential amplifiers, Various Parameters: Input Offset Voltage,Input Bias Current, CMRR,SVRR,Differential Input Resistance, slew rate familiarization with 741, offset null adjustments, measurement of op-amp parameters, frequency response op-amp.	
	Operational Amplifier	08
	inverting amplifier, non inverting amplifier, negative feedback, block diagram representation of feedback configurations, Voltage Series Feedback Amplifier, voltage shunt feedback amplifier, Differential Amplifiers, Voltage Follower.	
	Op-Amp Linear Applications	06
	DC and AC Amplifiers, Summing, Scaling and Averaging Amplifiers, Instrumentation Amplifier, Differential Input and Output Amplifier, V/I converter with grounding and floating load, I/V converter, Integrator and differentiator,	
	Active Filters	06
	Introduction, Butterworth Filter, Higher Order Filters, Band Pass and Band Reject Filters, All Pass filter	
Unit-2	Oscillators Principles, Types, Frequency Stability, Phase Shift, Wein Bridge, Quadrature Oscillators, Square Wave Generator, Triangular Wave Generator, Sawtooth Wave Generator, Voltage Controlled Oscillators.	04
	Comparators Introduction, Basic Comparator, Zero Crossing Detector, Schmit Trigger, Comparator Characteristics, Limitations of Op-Amps as Comparators, Voltage Limiters	04
	Converters	06
	High Speed and Precision type Comparators, V/F and F/V Converters, Clippers and Clampers, Peak Detector, Sample and Hold Circuit.	
	Specialized IC Applications	08
	Universal Active Filter, Switched Capacitor Filter,555 Timer, Power Amplifiers, Concept of regulation, 723 voltage regulator, three terminal voltage regulators (positive, negative, variables) applications, commercial voltage regulators ICs, universal active filter, switched capacitor filter, phased locked	
	loop.	

Linear integrated circuits	JAIN & CHAUDHARY
Op-amp & Linear Integ. Ckts	COUGHLIN
Integrated Electronics	MILLMAN & HALKIES
Op-amp & Linear Integ. Ckts	GAEKWAD

Tata Mcgraw PHI Tata Mcgraw PHI

List of Experiments (IE-512)

1. To experimentally study the performance of inverting amplifier-using op-amp.

2. To experimentally study the performance of non-inverting amplifier using op-amp.

- 3. To experimentally study the performance of differential amplifier using op-amp
- 4. To demonstrate working of an op-amp as a voltage follower.
- 5. To demonstrate working of an op-amp as a square wave generator.
- 6. To demonstrate working of an op-amp as a low pass filter.
- 7. To demonstrate working of an op-amp as a high pass filter.
- 8. To demonstrate working of an op-amp as a band pass filter.

9. To demonstrate working of an op-amp as a band rejection filter.

10.To demonstrate the operation of a 555 timer as monostable multivibrator.

11.To demonstrate the operation of a 555 timer as astable multivibrator.

12. To demonstrate working of instrumentation amplifier using 3 op-amp configurations.

Title of the course Subject Code	:	Signals and Systems IE-513	
Weekly load	:	5	LTP-3 2 0
Credit	:	4	
Theory:			

Unit Course Outlines

Unit	Course Outlines	Lecture(s)		
Unit-1	Introduction	12		
	Introduction to Signals and Systems, System Properties, Convolution of Signals,			
	Linear Shift Invariant Systems and their Properties.			
	Inroduction to Transforms	12		
	Introduction to Transforms, Fourier Series and Fourier Transform, Convergence			
	of Fourier Transform, Properties of Fourier Transform.			
Unit-2	Sampling and reconstruction of the signal			
	Sampling Theorem, Sampling/Reconstruction of Signals, Realistic Sampling,			
	Aliasing, Introduction to Digital Signal Processing, Advantages and			
	disadvantages of digital signal processing over analog signal processing			
	Laplace and Z-transforms	12		
	Introduction to Laplace Transform and Z-Transform, Region of Convergence,			
	Properties of Laplace and Z Transform, Inverse Laplace and Z Transforms,			
	Rational System Functions.			

Recommended Books:

Allan V.Oppenheim, S.Wilsky and S.H.Nawab, Signals and Systems, Pearson Education, 2007.
Edward W Kamen & Bonnie's Heck, "Fundamentals of Signals and Systems", Pearson Education, 2007.

Title of the course	:	Electrical Machine	
Subject Code	:	IE-514	
Weekly load	:	7	LTP-3 2 2
Credit	:	5	
Theory:			

Unit	Course Outlines	Lecture(s)
Unit-1	D.c. Machine	12
	Construction of D.C. machines - theory of operation of D.C. generator -	
	characteristics of D.C. generators – armature reaction – commutation – principle	
	of operation of D.C. motor - voltage equation - type of D.C. motor and their	
	characteristics – speed control of D.C. motors.	
	Transformer	12
	Theory of ideal transformer – EMF equation – constructional details of shell and	
	core type transformer - test on transformer - equivalent circuit - phasor diagram	
	– regulation and efficiency of a transformer.	
Unit-2	Synchronous machine	08
	Principle of alternators - construction details - equation of induced EMF -	
	vector diagram - method of starting of synchronous motor - torque developed	
	by the motor – V curves – speed control.	
	Induction machines	08
	Construction and principle of operation - classification of induction motor -	
	relation between torque and rotor power factor - starting and running condition	
	- condition for maximum torque - comparison between synchronous motor and	
	induction motors – speed control of induction motors.	
	Special machines	08
	Types of single phase motor – double revolving field theory – cross field theory	
	- capacitor start capacitor run motors - shaded pole motor - repulsion type	
	motor – universal motor – hysteresis motor.	

- 1. Fitzgerald A.E., Kingsly C., Umans S.D., 'Electrical Machinery', McGraw-Hill, Singapore, 1990.
- 2. Cotton H. 'Advanced Electrical Technology', Sir Isaac Pitman and Sons Ltd., London, 1971.
- 3. Del Toro V. 'Electrical Engineering Fundamentals', Prentice Hall of India, New Delhi, 1995.
- 4. Verinott, C.C., 'Fractional and sub-fractional horsepower electric motors', McGraw Hill, Singapore, 1985.
- 5. Theraja, B.L., 'A Text book of Electrical Technology', Vol.II, S.C.Chand and Co., New Delhi, 1997.

List of Experiments (IE-514)

- 1. Determination of coupling coefficient.
- 2. Series and parallel resonance.
- 3. Power measurement in single phase and three phase circuits.
- 4. Open circuit characteristics of DC generators.
- 5. Load characteristic of DC motors.
- 6. Speed control of DC motors
- 7. Brake test of DC motors.
- 8. Regulation of three-phase alternator.
- 9. Open circuit and short circuits of transformer.
- 10. Brake test of induction motors.
- 11. V-curve of synchronous motor.

Title of the course	:	Circuit Theory	
Subject Code	:	IE-515	
Weekly load	:	3	LTP-300
Credit	:	3	

Unit	Course Outline	Lecture(s)
Unit-1	Graph Theory	08
	Graph of a Network, definitions, tree, co tree, link, basic loop and basic cut set,	
	Incidence matrix, cut set matrix, Tie set matrix Duality, Loop and Node methods	
	of analysis.	
	Network Theorems (Applications to ac networks)	06
	Super-position theorem, Thevenin's theorem, Norton's theorem, maximum power	
	transfer theorem, Reciprocity theorem. Millman's theorem, compensation	
	theorem, Tellegen's theorem.	
	Network Functions	10
	Concept of Complex frequency, Transform Impedances Network functions of	
	one port and two port networks, concept of poles and zeros, properties of driving	
	point and transfer functions, time response and stability from pole zero plot,	
	frequency response and Bode plots.	
Unit-2	Two Port Networks	09
	Characterization of LTI two port networks ZY, ABCD and h parameters,	
	reciprocity and symmetry. Inter-relationships between the parameters, inter-	
	connections of two port networks, Ladder and Lattice networks. T & Π	
	Representation.	
	Network Synthesis	08
	Positive real function; definition and properties; properties of LC, RC and RL	
	driving point functions, synthesis of LC, RC and RL driving point immittance	
	functions using Foster and Cauer first and second forms.	
	Filters	07
	Image parameters and characteristics impedance, passive and active filter	
	fundamentals, low pass, highpass, band pass, band elimination filters.	

1. M.E. Van Valkenburg," Network Analysis", Prentice Hall of India 2. D.Roy Choudhary,"Networks and Systems" Wiley Eastern Ltd.

3. Donald E. Scott : "An Introduction to Circuit analysis: A System Approach" McGraw Hill Book Company.

4. A.Chakrabarti,"Circuit Theory" Dhanpat Rai & Co.

Reference Books :

5. M.E. Van Valkenburg,"An Introduction to Modern Network Synthesis", Wiley Eastern Ltd.

6. W.H. Hayt & Jack E-Kemmerly, Engineering Circuit analysis" Tata McGraw Hill.

7. Soni, Gupta ,"Circuit Analysis", Dhanpat Rai & Sons.

8. Ram Kalyan, Linear Circuits Oxford University Press.